\(\dfrac{a^2+b^2}{2}\ge ab\)
Cho a, b: ab\(\ge\)1. Chứng minh:
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$
$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$
$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$
$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$
$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$
$\Leftrightarrow (a-b)^2(ab-1)\geq 0$
Điều này luôn đúng với mọi $ab\geq 1$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$
Cho các số thực dương a,b và c thoả mãn: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)\(\ge\dfrac{3}{2}\)
CMR: \(a+b+c\ge ab+bc+ca\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
cho a,b>0 thỏa ab\(\ge\)4
so sánh
\(\dfrac{1}{2+a^2}\)+\(\dfrac{1}{2+b^2}\)và \(\dfrac{2}{2+ab}\)
Đặt [LATEX]A= \dfrac{2}{a^2+b^2}+ \dfrac{35}{ab}+2ab[/LATEX].
Áp dụng BĐT dạng [LATEX]\frac 1x+ \frac 1y \ge \frac{4}{x+y} \; \; x,y>0[/LATEX] ta có
[LATEX]\dfrac{4}{2(a^2+b^2)}+ \dfrac{4}{4ab} \ge \dfrac{4^2}{2(a+b)^2} \ge \frac 12 \qquad (1)[/LATEX].
Áp dụng BĐT AM-GM ta có
[LATEX]2ab+ \dfrac{32}{ab} \ge 16 \qquad (2)[/LATEX].
Cuối cùng
[LATEX]\dfrac{2}{ab} \ge \frac 12 \qquad (3)[/LATEX].
Cộng [LATEX](1)+(2)+(3)[/LATEX] ta thu được [LATEX]A \ge 17[/LATEX].
Dấu đẳng thức xảy ra khi và chỉ khi [LATEX]a=b=2[/LATEX].
Cho a,b,c >0 Chứng minh rằng:
a) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
b) \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
a) Cho a,b,c >0
Chứng minh: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
b) Cho a,b \(\ge\)1 , chứng minh:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)
a)Svac-so:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)
b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)
\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)
\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)
c/m bất đảng thức :
a)\(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\)
b)\(\dfrac{a}{b^2}+\dfrac{b}{a^2}+\dfrac{16}{a+b}\ge5\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
c)\(\dfrac{a}{2b}+\dfrac{2b}{a+b}\)+\(\dfrac{ab^2}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
d)\(\dfrac{a}{4b^2}+\dfrac{2b}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+2b\right)}\)
e)\(\dfrac{2}{a^2+ab+b^2}+\dfrac{1}{3b^2}\ge\dfrac{9}{\left(a+2b\right)^2}\)
a ) Cho a,b,c >0 C/m:
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a^2+b^2+c^2}{a+b+c}\)
b ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)
c ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c.\)
giúp nha mn
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
b)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)^3}{9}}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)}{3}\times\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c.
1. Chứng minh rằng:
a. \(\dfrac{a^2+b^2}{2}\)≥(\(\dfrac{a+b}{2}\))2
b. \(\dfrac{a^2+b^2+c^2}{3}\)≥(\(\dfrac{a+b+c}{3}\))2
2. Chứng minh rằng:
a. a2+\(\dfrac{b^2}{4}\)≥ab
b. (a+b)2≤ 2(a2+b2)
c. a2+b2+1 ≥ ab+a+b
3. Chứng minh rằng: a2+ 5b2-(3a+b) ≥ 3ab-5
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
2. a) a2 + \(\dfrac{b^2}{4}\)≥ab
<=> a2 - ab + \(\dfrac{b^2}{4}\)≥ 0
<=> a2 -2.\(\dfrac{b}{2}a+\left(\dfrac{b}{2}\right)^2\) ≥ 0
<=> \(\left(a-\dfrac{b}{2}\right)^2\)≥ 0 ( luôn đúng )
=> đpcm
b) ( a + b)2 ≤ 2( a2 + b2)
<=> a2 + 2ab + b2 - 2a2 - 2b2 ≤ 0
<=> - ( a2 - 2ab + b2 ) ≤ 0
<=> - ( a - b)2 ≤ 0 ( luôn đúng )
=> đpcm
c) a2 + b2 + 1 ≥ ab + a + b
<=> 2( a2 + b2 + 1 ) ≥ 2( ab + a + b)
<=> a2 - 2ab + b2 + a2 - 2a + 1 + b2 - 2b + 1 ≥ 0
<=> ( a - b)2 + ( a - 1)2 + ( b - 1)2 ≥ 0 ( luôn đúng )
=> đpcm
cho a,b,c là số thực dương. Cmr:
1.\(\dfrac{a}{b^2+bc+c^2}+\dfrac{b}{c^2+ca+a^2}+\dfrac{c}{a^2+ab+b^2}\ge\dfrac{a+b+c}{ab+bc+ca}\)
2.\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\dfrac{9}{4}\)
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)