Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Thu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2022 lúc 19:51

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

michelle holder
Xem chi tiết
Hung nguyen
7 tháng 6 2017 lúc 8:55

\(4x+\dfrac{1}{4x}-\dfrac{4\sqrt{x}+3}{x+1}+2017\)

\(=\left(4x+\dfrac{1}{4x}\right)-4+\dfrac{4x-4\sqrt{x}+1}{x+1}+2017\)

\(=\left(4x+\dfrac{1}{4x}\right)+\dfrac{\left(2\sqrt{x}-1\right)}{x+1}+2013\)

\(\ge2+0+2013=2015\)

Dấu = xảy ra khi \(x=\dfrac{1}{4}\)

Kinder
Xem chi tiết
Yeutoanhoc
11 tháng 6 2021 lúc 7:51

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\) 

Trần Thị Mỹ Trinh
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 14:47

\(a,=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}+3}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}\)

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 14:47

a: \(=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

 

lê thị thu huyền
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Nguyễn Như Ý
10 tháng 5 2018 lúc 20:04
https://i.imgur.com/nH0jngt.jpg
Nguyễn Như Ý
10 tháng 5 2018 lúc 20:24
https://i.imgur.com/s11CjBM.jpg
Thành Trương
12 tháng 5 2018 lúc 15:38

Căn bậc hai. Căn bậc baBài 1

Trang Nguyễn
Xem chi tiết
Akai Haruma
17 tháng 11 2021 lúc 23:49

Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)

b.

\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)

Áp dụng BĐT Cô-si:

$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$

Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$

Felix MC-Gamer
Xem chi tiết
Akai Haruma
21 tháng 6 2018 lúc 17:05

Bài 2:

Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :

\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.

Thay $x=1$ và $x=-1$ lần lượt ta có:

\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)

PP 2 xin đợi bạn khác giải quyết :)

Akai Haruma
21 tháng 6 2018 lúc 17:12

Bài 3:

Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)

\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)

\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)

Akai Haruma
21 tháng 6 2018 lúc 17:00

Bài 1:

a) ĐKXĐ: \(\left\{\begin{matrix} 1-4x^2\neq 0\\ \frac{4x^2-x^4}{1-4x^2}+1\neq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\neq \frac{\pm 1}{2}\\ \frac{1-x^4}{1-4x^2}\neq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\neq \frac{\pm 1}{2}\\ x\neq \pm 1\end{matrix}\right.\)

Rút gọn:

\(A=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\right)\)

\(=\frac{4x-x^3-x+4x^3}{1-4x^2}:\frac{1-x^4}{1-4x^2}=\frac{3x+3x^3}{1-4x^2}.\frac{1-4x^2}{1-x^4}\)

\(=\frac{3x(x^2+1)}{1-x^4}=\frac{3x(x^2+1)}{(x^2+1)(1-x^2)}=\frac{3x}{1-x^2}\)

b)

\(A=\frac{3x}{1-x^2}>0\Leftrightarrow \left[\begin{matrix} 3x>0, 1-x^2>0\\ 3x<0, 1-x^2< 0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>0; -1< x< 1\\ x< 0;\text{x>1 or x< -1}\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} 0< x< 1\\ x< -1\end{matrix}\right.\)

\(A=\frac{3x}{1-x^2}< 0\Leftrightarrow \left[\begin{matrix} 3x>0; 1-x^2< 0\\ 3x< 0; 1-x^2>0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>0; \text{x>1 or x< -1}\\ x< 0; -1< x< 1\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>1\\ -1< x< 0\end{matrix}\right.\)

pham ba linh
Xem chi tiết
dokhanhvan_123
17 tháng 10 2020 lúc 20:40

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

Khách vãng lai đã xóa