Bài 1:Cho x\(\ge0\).Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
1)A=3x+2\(\sqrt{x}\)+1min
2)A=x+3\(\sqrt{x}\)-3min
3)A=-2x-3\(\sqrt{x}\)+2max
4)A=-4x-5\(\sqrt{x}\)-3max
5)A=x-2\(\sqrt{x}\)+2min
6)A=x-4\(\sqrt{x}\)-5min
7)A=-x+6\(\sqrt{x}\)+5max
8)A=-x+8\(\sqrt{x}\)-10max
9)A=\(\dfrac{2}{\sqrt{x}+1}\)max
10)A=\(\dfrac{4}{\sqrt{x}+2}\)max
11)A=\(\dfrac{-3}{\sqrt{x}+3}\)min
12)A=\(\dfrac{-5}{\sqrt{x}+4}\)min
13)A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)max
14)A=\(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)max
15)A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)min
16)A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+4}\)min
17)A=\(\dfrac{x+3}{\sqrt{x}+1}\)min
18)A=\(\dfrac{x+5}{\sqrt{x}+2}\)min
19)A=\(\dfrac{x+12}{\sqrt{x}+2}\)min
20)A=\(\dfrac{x+7}{\sqrt{x}+3}\)min
21)A=\(\dfrac{x+9}{\sqrt{x}+4}\)min
22)A=\(\dfrac{x+24}{\sqrt{x}+5}\)min
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1