Tìm x,y thỏa mãn PT sau: \(\sqrt{x^2-4x+5}+\sqrt{9y^2-6y+1}=1\)
Tìm x, y thoả mãn các phương trình sau:
a) \(\sqrt{x^2-4x+5}+\sqrt{9y^2-6y+1}=1\)
b)\(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\)
â, đánh giá về trái ta có
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}>=1\)
\(\sqrt{9y^2-6y+1}>=0\)
do đó dấu bằng xảy ra khi x=2 va y=1/3
phần b làm tương tự
b, VT <=2-1=1
cho x,y không âm thỏa mãn \(4x^2+9y^2=1\)
Tìm GTNN của P=\(\sqrt{4+10x}+\sqrt{4+15y}\)
Tìm x, y thoả mãn các phương trình sau:
a) \(\sqrt{x^2-4x+5}+\sqrt{9y^2-6y+1}=1\)
b)\(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\)
tìm x; y thỏa mãn sau \(\sqrt{4-x^2}+\sqrt{1+4x}+\sqrt{x^2+y^2-2y-3}=\sqrt{x^4-16}-y+5\)
cho x,y không âm thỏa mãn \(4x^2+9y^2\)
Tìm GTNN của P=\(\sqrt{4+10x}+\sqrt{4+15y}\)
Tìm x và y:
\(a.\sqrt{x^2-4x+5}+\sqrt{9y^2-6y+1}=1\)
\(b.\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\)
giải hệ pt
\(\left\{{}\begin{matrix}x^2+4x-5=y^2-6y\\\sqrt{x+y}+2\sqrt{1-y}=3+\sqrt{2y-5}\end{matrix}\right.\)
Lời giải:
Xét PT $(1)$:
$x^2+4x-5=y^2-6y$
$\Leftrightarrow x^2+4x+4=y^2-6y+9$
$\Leftrightarrow (x+2)^2=(y-3)^2$
$\Leftrightarrow (x+2-y+3)(x+2+y-3)=0$
$\Leftrightarrow (x-y+5)(x+y-1)=0$
Nhưng PT(2) thì có vấn đề, vì $1-y\geq 0\Rightarrow y\leq 1$
Mà $2y-5\geq 0\Leftrightarrow y\geq \frac{5}{2}$ (vô lý)
1) Giải PT : (x2 - 6x - 7)2 - 9(x2 - 4x - 3)2 = 0
2) Cho x, y thỏa mãn PT \(\sqrt{x+y-\frac{2}{3}}=\sqrt{x}+\sqrt{y}-\sqrt{\frac{2}{3}}\). Tính x.y
Bài 1:
\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)
\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)
Cho các số thực x,y thỏa mãn: \(\dfrac{x^2+y^2}{2}=y-2x\). Chứng minh rằng:
\(\left|\sqrt{2-2x}-\sqrt{4x+6y+20}\right|=3\sqrt{2}\)