Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thành Huy
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 11 2020 lúc 23:28

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)

=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2

Đề sai à --

Khách vãng lai đã xóa
Nguyễn Thành Huy
5 tháng 11 2020 lúc 22:50

kkk. thế mới hỏi chứ. đề đấy: đố giải được

Khách vãng lai đã xóa
Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 22:49

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

Aurora
Xem chi tiết
missing you =
16 tháng 5 2021 lúc 8:47

ta có x+y=\(\sqrt{10}\)=>(x+y)^2=10

A=(x^4+1)(y^4+1)

=x^4.y^4+1+x^4+y^4+2x^2.y^2-2x^2.y^2

=x^4.y^4+1+(x^2+y^2)^2-2x^y^2=x^4.y^4+1+[(x+y)^2-2xy]

=x^4.y^4+1+(10-2xy)-2x^2.y^2

=x^4.y^4+1+100-40xy+4.x^2.y^2-2x^2.y^2

=x^4.y^4+101-40xy+2.x^2.y^2

=(x^4.y^4-8.x^2.y^2+16)+(10.x^2.y^2-40xy+40)+45

=(x^2.y^2-4)^2+10.(xy-2)^2+45\(\ge\)0

dấu = xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)

vậy Min A=45

 

 

 

missing you =
16 tháng 5 2021 lúc 8:54

\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)là nghiệm pt x^2-\(\sqrt{10}\)x+2

=>\(\Delta\)=(-\(\sqrt{10}\))^2-4.2=2>0

=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)

 

missing you =
16 tháng 5 2021 lúc 10:56

ta có x+y=√1010=>(x+y)^2=10

A=(x^4+1)(y^4+1)

=x^4.y^4+1+x^4+y^4+2x^2.y^2-2x^2.y^2

=x^4.y^4+1+(x^2+y^2)^2-2x^y^2=x^4.y^4+1+[(x+y)^2-2xy]

=x^4.y^4+1+(10-2xy)-2x^2.y^2

=x^4.y^4+1+100-40xy+4.x^2.y^2-2x^2.y^2

=x^4.y^4+101-40xy+2.x^2.y^2

=(x^4.y^4-8.x^2.y^2+16)+(10.x^2.y^2-40xy+40)+45

=(x^2.y^2-4)^2+10.(xy-2)^2+45≥45

dấu = xảy ra ⇔⇔{x+y=√10x.y=2{x+y=10x.y=2

vậy Min A=45

Trang
Xem chi tiết
Nguyễn Văn Vinh
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

Đoàn Thị Thu Hương
Xem chi tiết
phung thi  khanh hop
22 tháng 1 2016 lúc 17:13

em mới học lớp 6 khó quá 

CandyK
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 16:50

\(A=\dfrac{\left(\sqrt{x}-2\right)^2+1}{\sqrt{x}-2}=\sqrt{x}-2+\dfrac{1}{\sqrt{x}-2}\\ \ge2\sqrt{\left(\sqrt{x}-2\right)\left(\dfrac{1}{\sqrt{x}-2}\right)}=2\cdot1=2\left(BĐT.cauchy\right)\)

Dấu \("="\Leftrightarrow\left(\sqrt{x}-2\right)^2=1\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

Lấp La Lấp Lánh
19 tháng 9 2021 lúc 16:51

\(A=\dfrac{x-4\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)^2+1}{\sqrt{x}-2}=\sqrt{x}-2+\dfrac{1}{\sqrt{x}-2}\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương:

\(A=\sqrt{x}-2+\dfrac{1}{\sqrt{x}-2}\ge2\sqrt{\dfrac{\sqrt{x}-2}{\sqrt{x}-2}}=2\)

\(minA=2\Leftrightarrow\sqrt{x}-2=1\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

 

Bùi Phương Thu
Xem chi tiết
cr7 Dương
18 tháng 3 2018 lúc 20:20

mình không làm đc

Anh Trần
22 tháng 11 2018 lúc 20:36

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này

nguyễn thanh huyền
Xem chi tiết
Yeutoanhoc
22 tháng 5 2021 lúc 20:56

`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$

Võ Quốc Tài
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
9 tháng 11 2018 lúc 12:38

A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất 

=> x - 1 lớn nhất 

=> x là số dương vô cùng đề sai nhá