Cho a,b,c tất cả đều dương.Sao cho a+b+c = 2015
Cm : \(\frac{a}{a+\sqrt{2015a+bc}}+\frac{b}{b+\sqrt{2015b+ac}}+\frac{c}{c+\sqrt{2015c+ab}}\le1\)
Sao ko có " Sư phụ" nào chỉ giáo dùm vậy trời ! hic
Cho các số dương a,b,c thỏa mãn a+b+c=2015. Chứng minh rằng :
\(\frac{a}{a+\sqrt{2015a+bc}}+\frac{b}{b+\sqrt{2015b+ac}}+\frac{c}{c+\sqrt{2015c+ab}}\le1\)
Cho a, b, c >0, a+b+c= 2015. Chung minh:
\(\frac{a}{a+\sqrt{2015a+bc}}\)+\(\frac{b}{b+\sqrt{2015b+ca}}\)+\(\frac{c}{c+\sqrt{2015c+ab}}\)\(\le\)1
(Dùng Bu-nhi-a-cốp-xki)
Ta có : \(\sqrt{2015a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có : \(\left(a+b\right)\left(a+c\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a}^2+\sqrt{c}^2\right)\ge\left(\sqrt{ac}+\sqrt{ab}\right)^2\)
\(\Rightarrow\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)
\(\Rightarrow\frac{a}{a+\sqrt{2015a+bc}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}^2}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
\(\Rightarrow\Sigma\frac{a}{a+\sqrt{2015a+bc}}\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
1. cho a,b,c > 0 và a+b+c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
2. ch a,b,c là các số thực dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=2015\). Tính GTNN của \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Cho a,b,c>0 thỏa mãn a+b+c=2019
Chứng minh rằng \(\frac{a}{a+\sqrt{2019a+bc}}+\frac{b}{b+\sqrt{2019b+ac}}+\frac{c}{c+\sqrt{2019c+ab}}\le1\)
Ta có: \(2019a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ab}+\sqrt{ac}\right)^2\)
\(\Rightarrow a+\sqrt{2019a+bc}\ge a+\sqrt{ab}+\sqrt{bc}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow\frac{a}{a+\sqrt{2019a+bc}}\le\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cộng vào suy ra điều phải chứng minh
cho 3 số thực a, b, c>0 thỏa mãn a+b+c=2013
cm:
\(\frac{a}{a+\sqrt{2013a+bc}}+\frac{b}{b+\sqrt{2013b+ac}}+\frac{c}{c+\sqrt{2013c+ab}}\le1\)
Ta có : \(\frac{a}{a+\sqrt{2013a+bc}}=\frac{a}{a+\sqrt{a^2+ab+ac+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Theo bất đẳng thức Bunhiacopxki : \(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)
\(\Rightarrow\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
hay \(\frac{a}{a+\sqrt{2013a+bc}}\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự : \(\frac{b}{b+\sqrt{2013b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
\(\frac{c}{c+\sqrt{2013c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng các bất đẳng thức trên theo vế được \(\frac{a}{a+\sqrt{2013a+bc}}+\frac{b}{b+\sqrt{2013b+ac}}+\frac{c}{c+\sqrt{2013c+ab}}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\\a+b+c=2013\\a,b,c>0\end{cases}}\) \(\Leftrightarrow a=b=c=671\)
Cho \(a,b,c>0\) và \(a+b+c=1\)
Chứng minh : \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Đặt \(M=\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}\)
\(\Rightarrow M^2\le\left(1+1+1\right)\left(2015a+1+2015b+1+2015c+1\right)\) (bđt Cauchy Shwarz)
\(=6048\) \(\left(a+b+c=1\right)\)
\(\Rightarrow M\le\sqrt{6048}< \sqrt{6084}=78\) (đpcm)
Cho \(a,b,c>0\) và \(a+b+c=1\)
Chứng minh : \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Cho các số dương a,b,c thỏa mãn a+b+c=2016.Chứng minh rằng:
\(\frac{a}{a+\sqrt{2017a+bc}}+\frac{b}{b+\sqrt{2017b+ac}}+\frac{c}{c+\sqrt{2017c+ab}}\)\(\le1\)
Cho a,b,c là các số dương tùy ý. CMR \(\frac{\sqrt{ab}}{c+2\sqrt{ab}}+\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}\le1\)
Để dễ nhìn, đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)
\(VT=\frac{xy}{z^2+2xy}+\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}\)
\(2VT=\frac{2xy}{z^2+2xy}+\frac{2yz}{x^2+2yz}+\frac{2zx}{y^2+2xz}=1-\frac{z^2}{z^2+2xy}+1-\frac{x^2}{x^2+2yz}+1-\frac{y^2}{y^2+2xz}\)
\(2VT=3-\left(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\right)\)
\(2VT\le3-\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=3-\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)
\(\Rightarrow VT\le1\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)