Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhan Thanh
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Nguyễn Thúy Vy
Xem chi tiết
ILoveMath
13 tháng 11 2021 lúc 14:56

\(=2\sqrt{3}-4\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)

Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 22:30

Bài 5: 

\(\widehat{B}=60^0\)

\(AB=8\sqrt{3}\left(cm\right)\)

\(BC=16\sqrt{3}\left(cm\right)\)

illumina
Xem chi tiết
HT.Phong (9A5)
6 tháng 12 2023 lúc 7:01

a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)

\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)

b) Xét tử: 

\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1) 

Xét mẫu: 

\(x+\sqrt{xy}+y\)

\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2) 

Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm) 

Phạm Ngọc Anh
Xem chi tiết
Akai Haruma
28 tháng 1 lúc 20:01

Lời giải:

\(A=\frac{(x-1)+(\sqrt{y}+\sqrt{xy})}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-\sqrt{y}}\\ =\frac{(\sqrt{x}-1)(\sqrt{x}+1)+\sqrt{y}(\sqrt{x}+1)}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-\sqrt{y}}\\ =\frac{(\sqrt{x}+1)(\sqrt{x}-1+\sqrt{y})}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-\sqrt{y}}\\ =\frac{\sqrt{x}+\sqrt{y}-1}{\sqrt{x}-\sqrt{y}}\)

\(A=\dfrac{x+\sqrt{y}+\sqrt{xy}-1}{\sqrt{x}+1}:\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\dfrac{\left(x-1\right)+\sqrt{y}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}:\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{y}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}:\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\dfrac{\left(\sqrt{x}-1+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

 

Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2021 lúc 16:09

a) Ta có: \(-7xy\cdot\sqrt{\dfrac{3}{xy}}\)

\(=\dfrac{-7xy\cdot\sqrt{3xy}}{xy}\)

\(=-7\sqrt{3}\cdot\sqrt{xy}\)

b) Ta có: \(ab+b\sqrt{a}+\sqrt{a}+1\)

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

Hiện thực khốc liệt :D
30 tháng 6 2021 lúc 16:11

$a)-7xy.\sqrt{\dfrac{3}{xy}}$

$=-7.\sqrt{x^2y^2.\dfrac{3}{xy}}(do \,x,y>0a\to xy>0)$

$=-7.\sqrt{\dfrac{xy}{3}}$

$b)ab+b\sqrt{a}+\sqrt{a}+1(a \ge 0)$

$=b\sqrt{a}(\sqrt{a}+1)+\sqrt{a}+1$

$=(\sqrt{a}+1)(b\sqrt{a}+1)$

Ricky Kiddo
30 tháng 6 2021 lúc 16:16

undefined

Ly Ly
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 9 2021 lúc 21:22

a) \(-7xy.\sqrt{\dfrac{3}{xy}}=-7xy.\dfrac{\sqrt{3xy}}{xy}=-7\sqrt{3xy}\)

b) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 21:31

a: \(-7xy\cdot\sqrt{\dfrac{3}{xy}}=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3xy}\)

b: \(ab+b\sqrt{a}+\sqrt{a}+1\)

\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

Nguyễn Đan Xuân Nghi
Xem chi tiết
HT.Phong (9A5)
15 tháng 7 2023 lúc 8:29

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y}\right)-2x\) (với \(x\ne y,x,y\ge0\))

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}+\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{\sqrt{y}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}+\sqrt{y}-\sqrt{x}}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{2\sqrt{y}}{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}\cdot\dfrac{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)}{\sqrt{x}-\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)-2x\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-2x\sqrt{x}-2x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-4x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

Phan Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 0:18

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)