Cho biểu thức:
A = (\(\sqrt{x}\) + \(\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)) : (\(\dfrac{x}{\sqrt{xy}+y}\) + \(\dfrac{y}{\sqrt{xy}-x}\) - \(\dfrac{x+y}{\sqrt{xy}}\))
a) Rút gọn A
b) Tính giá trị của biểu thức A biết x = 3; y = 4 + 2\(\sqrt{3}\)
Cho biểu thức \(P=\dfrac{xy-\sqrt{x^2-1}\sqrt{y^2-1}}{xy+\sqrt{x^2-1}\sqrt{y^2-1}}\) Tính giá trị biểu thức với \(x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right);y=\dfrac{1}{2}\left(b+\dfrac{1}{b}\right);a,b\ge1\)
\(\left(\sqrt{X}+\dfrac{Y-\sqrt{XY}}{\sqrt{X}+\sqrt{Y}}\right):\left(\dfrac{X}{\sqrt{XY}+y}+\dfrac{Y}{\sqrt{XY}-x}-\dfrac{X+y}{\sqrt{XY}}\right)\)
Cho biểu thức \(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\) Tìm các giá trị x, y, nguyên để P có giá trị bằng 2
(\(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)):\(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
\(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(\left(1-\dfrac{4\sqrt{x}}{x-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\) ĐKXĐ: x>0 ; x≠1 ; x≠4
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\) ĐKXĐ: x>0 và x≠4
Chứng minh đẳng thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x\ge0,y\ge0,x^2+y^2\ne0\right)\)
b) \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a\ge0,a\ne1\right)\)
c) \(\sqrt{x+2\sqrt{x-2}-1}\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)=\sqrt{x}+\sqrt{3}\left(x\ge2,x\ne3\right)\)
bài 1 :rút gọn
\(\dfrac{x+y-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
bài 2 ; tính
\(\sqrt{\left(1-2\right)^2}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{1}{2}}\)
Cho A= \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
a) Đặt điều kiện để biểu thức A có nghĩa
b) Rút gọn A
Giúp mk với !!!
Cho biểu thức
\(P=\left(\dfrac{2\sqrt{3}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) Tìm ĐKXĐ của P
b) Rút gọn P
c) Tính giá trị của P khi \(x=4-2\sqrt{3}\)
d) Tìm x để P < \(-\dfrac{1}{3}\)
e) Tìm x để P có giá trị nguyên