Thay \(x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right)\) vào chỗ \(\sqrt{x^2-1}\)
Thay \(x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right)\) vào chỗ \(\sqrt{x^2-1}\)
cho biểu thức :\(B=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)
a) Rút gọn biểu thức B
b) Tính giá trị của B khi x=\(4+2\sqrt{3}\)
\(P=\left(\sqrt{x}+\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\):\(\left(\dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}}\right)\)
a) Với giá trị nào cùa x thì biểu thức có nghĩa
b) Rút gọn P
c) Tím P với x=3 và y=\(\dfrac{2}{2-\sqrt{3}}\)
Giúp với ạ
cho biểu thức
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a,Tính giá trị biểu thức B khi x=36
b,Tìm x để B<\(\dfrac{1}{2}\)
c,Rút gọn A
d, Tìm giá trị x nguyên nhỏ nhất để biểu thức P=A.B nguyên
Chứng minh đẳng thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x\ge0,y\ge0,x^2+y^2\ne0\right)\)
b) \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a\ge0,a\ne1\right)\)
c) \(\sqrt{x+2\sqrt{x-2}-1}\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)=\sqrt{x}+\sqrt{3}\left(x\ge2,x\ne3\right)\)
Cho biểu thức \(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\) Tìm các giá trị x, y, nguyên để P có giá trị bằng 2
Bài 1: Khử mẫu của biểu thức dưới căn
a) -xy\(\sqrt{\dfrac{y}{x}}\) ( x >0; y\(\ge\)0)
b) \(\sqrt{\dfrac{5a^3}{49b}}\left(a\ge0;b>0\right)\)
c) \(-7xy\sqrt{\dfrac{3}{xy}}\left(x< 0;y< 0\right)\)
Bài 2: Đưa thừa số ra ngoài căn
a)\(\sqrt{\dfrac{1}{25a^2}}\left(a< 0\right)\)
b) \(\dfrac{1}{3}\sqrt{225a^2}\)
Cho biểu thức \(A=\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{4}{\sqrt{x}+1}\right)\)
a/ Rút gọn A với \(x\ge0,x\ne1\)
b/ Tìm x để A < 0
c/ Tìm số nguyên x để A có giá trị nguyên
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
1. rút gọn biểu thức
A= \(\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
2. rút gọn biểu thức
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
3. rút gọn
A=\(\left(\dfrac{1}{\sqrt{x-1}}\right)-\left(\dfrac{1}{\sqrt{x+1}}\right):\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}\right)\)
4.rút gọn
P= \(\dfrac{1-\sqrt{x-1}}{\sqrt{x-2\sqrt{x-1}}}\)
5.rút gọn biểu thức
a.\(\sqrt{11-2\sqrt{16}}\)
b.\(\sqrt{9-2\sqrt{14}}\)
6.rút gọn
Q=\(\dfrac{\sqrt{x+\sqrt{x^2-y^2}}-\sqrt[]{x-\sqrt{x-y^2}}}{\sqrt{2\left(x-y\right)}}\)
7.cho biểu thức
A= \(\dfrac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\dfrac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2}-2x}\)
a. tìm đkxđ
b.rút gọn
c.tính giá trị để A<2