a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)
\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)
b) \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\) (*)
Thay (*) vào B , ta được : \(B=\dfrac{2-\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+3}\)
Bạn santa làm sai r nha!
a, ĐKXĐ: x \(\ge\) 0; x \(\ne\) 4; x \(\ne\) 0
B = \(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)
B = \(\left(\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\)
B = \(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
B = \(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3}\)
B = \(\dfrac{\left(2-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}\)
B = \(\dfrac{2-\sqrt{x}}{3\sqrt{x}}\) (Đoạn này bạn kia viết sai đề mà vẫn đúng kết quả được?)
Vậy ...
b, Ta có: x = 4 + 2\(\sqrt{3}\) = (\(\sqrt{3}\) + 1)2 (TMĐK)
\(\Rightarrow\) \(\sqrt{x}\) = \(\sqrt{3}+1\) (1)
Thay (1) vào B ta được:
B = \(\dfrac{2-\sqrt{3}-1}{3\left(\sqrt{3}-1\right)}\) = \(\dfrac{1-\sqrt{3}}{-3\left(1-\sqrt{3}\right)}\) = \(\dfrac{-1}{3}\)
Vậy ...
Chúc bn học tốt!
mình làm lại nhé :
đkxđ : \(\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)
\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{3}\)
\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)
câu b làm như kia là oke rồi nhé <3
a) Ta có: \(B=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3}\)
\(=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)