(2cosx-√2)(tan2x-√3)=0
giải pt : 2cosx+tan2x=1
giải các pt
a) \(sinx-2cosx=0\)
b) \(tan2x-cotx=0\)
c) \(sin2x-2\sqrt{3}cos^2x=0\)
d) \(tan\left(3x-50^o\right)+cot\left(x-30^o\right)=0\)
a/
\(\Leftrightarrow sinx=2cosx\)
Nhận thấy \(cosx=0\) không phải nghiệm, pt tương đương:
\(\frac{sinx}{cosx}=2\Leftrightarrow tanx=2\)
\(\Leftrightarrow tanx=tana\) (với \(a\in\left(0;\frac{\pi}{2}\right)\) sao cho \(tana=2\))
\(\Rightarrow x=a+k\pi\)
b/
\(tan2x=cotx=tan\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow2x=\frac{\pi}{2}-x+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{3}\)
c/
\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x=0\)
\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx-\sqrt{3}cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\sinx=\sqrt{3}cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\)
\(\Rightarrow x=\frac{\pi}{3}+k\pi\)
d/
\(\Leftrightarrow tan\left(3x-50^0\right)=-cot\left(x-30^0\right)\)
\(\Leftrightarrow tan\left(3x-50^0\right)=tan\left(x+60^0\right)\)
\(\Rightarrow3x-50^0=x+60^0+k180^0\)
\(\Rightarrow x=55^0+k90^0\)
tìm tập xác định của hàm số
1.y=\(cot\left(\dfrac{\pi}{3}-x\right)\)
2.y=\(\dfrac{tan2x-1}{\sqrt{1+sinx}+1}\)
3.y=\(\sqrt{\sqrt{1+sinx}-\sqrt{2}}\)
4.y=\(\dfrac{3cos4x-3}{\sqrt{2-2cosx}-2}\)
5.y=\(\dfrac{1-cot3x}{1-\sqrt{1+sin3x}}\)
6.y=\(cot2x+cotx\)
1. \(sin\left(\dfrac{\pi}{3}-x\right)\ne0\Leftrightarrow\dfrac{\pi}{3}-x\ne k\pi\Leftrightarrow x\ne\dfrac{\pi}{3}-k\pi\)
2. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
3. \(\sqrt{1+sinx}-\sqrt{2}\ge0\Leftrightarrow1+sinx\ge2\Leftrightarrow sinx\ge1\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
4. \(\sqrt{2-2cosx}-2\ne0\Leftrightarrow2-2cosx\ne4\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)
5. \(1-\sqrt{1+sin3x}\ne0\Leftrightarrow sin3x\ne0\Leftrightarrow3x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{3}\)
Tìm tập xác định của hàm số sau :
1) \(y=\frac{tan2x-1}{\sqrt{1+sinx}+1}\)
2)\(y=\frac{3cos4x-3}{\sqrt{2-2cosx}-2}\)
3)\(y=\frac{1-cot3x}{1-\sqrt{1+sin3x}}\)
1/ ĐKXĐ: \(cos2x\ne0\Rightarrow2x\ne k\frac{\pi}{2}\Rightarrow x\ne\frac{k\pi}{4}\)
2/ ĐKXĐ:
\(\sqrt{2-2cosx}\ne2\Rightarrow2-2cosx\ne4\)
\(\Rightarrow cosx\ne-1\Rightarrow x\ne\pi+k2\pi\)
3/ ĐKXĐ: \(sin3x\ne0\Rightarrow3x\ne k\pi\Rightarrow x\ne\frac{k\pi}{3}\)
\(3\tan2x-3\tan x-\frac{5}{2}=0\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{6tanx}{1-tan^2x}-3tanx-\frac{5}{2}=0\)
\(\Leftrightarrow12tanx-6tanx\left(1-tan^2x\right)-5=0\)
\(\Leftrightarrow6tan^3x+6tanx-5=0\)
Bạn coi lại đề :)
Phương trình 2 cos x / 2 + 3 = 0 có nghiệm là:
A. x = ±5π/3 +k4π
B. x = ±5π/6 +k2π
C. x = ±5π/6 +k4π
D. x = ±5π/3 +kπ
√3 tan2x+3=0 cần gấp ạ
Giai phương trình bậc nhất :
a/ \(2sinx+\sqrt{3}=0\)
b/ \(2cosx-\sqrt{3}=0\)
c/ \(2cosx-\sqrt{2}=0\)
d/ \(tanx+\sqrt{3}=0\)
a/ \(sinx=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
b/ \(cosx=\frac{\sqrt{3}}{2}=cos\left(\frac{\pi}{6}\right)\Rightarrow x=\pm\frac{\pi}{6}+k2\pi\)
c/ \(cosx=\frac{\sqrt{2}}{2}=cos\left(\frac{\pi}{4}\right)\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)
d/ \(tanx=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\Rightarrow x=-\frac{\pi}{3}+k\pi\)
giải các pt
a) \(\frac{tanx-8\sqrt{3}}{tanx-2\sqrt{3}}=3\)
b) \(tan2x+cot\frac{5\pi}{8}=0\)
c) \(\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)+3=0\)
d) \(\left(tanx-5\right)\left(tan4-tan2x\right)=0\)
a/
ĐKXĐ: ...
\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)
\(\Leftrightarrow2tanx=-2\sqrt{3}\)
\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
b/
\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)
\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)
c/
\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)
\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)
\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)