Phân tích thành nhân tử 4x2-y2+4x+1
Phân tích đa thức thành nhân tử: a)4x2 +4x+1. b)x2+6x-y2+9
a) $4x^2+4x+1$
$=(2x)^2+2\cdot2x\cdot1+1^2$
$=(2x+1)^2$
b) $x^2+6x-y^2+9$
$=(x^2+6x+9)-y^2$
$=(x^2+2\cdot x\cdot3+3^2)-y^2$
$=(x+3)^2-y^2$
$=(x+3-y)(x+3+y)$
$\text{#}Toru$
a: \(4x^2+4x+1\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2\)
\(=\left(2x+1\right)^2\)
b: \(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3+y\right)\left(x+3-y\right)\)
phân tích các đa thức sau thành nhân tử: a) 4x(2x - 3y) - 8y(3y - 2x) b) 4x2 - 4xy + y2 - 9z2 c) x2y + yz + xy2 + xz d) (1 - x2)x2 - 16x2 - 16
Bạn thử xem lại đề câu d nhé.
a) Ta có: \(4x\left(2x-3y\right)-8y\left(3y-2x\right)\)
\(=4x\left(2x-3y\right)+8y\left(2x-3y\right)\)
\(=4\left(2x-3y\right)\left(x+2y\right)\)
b) Ta có: \(4x^2-4xy+y^2-9z^2\)
\(=\left(2x+y\right)^2-\left(3z\right)^2\)
\(=\left(2x+y+3z\right)\left(2x+y-3z\right)\)
c) Ta có: \(x^2y+yz+xy^2+xz\)
\(=xy\left(x+y\right)+z\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+z\right)\)
Phân tích thành nhân tử:
4x2- 4xy + y2 -8x +4y
2x3 - 3x2 + 3x -1
1)\(4x^2-4xy+y^2-8x+4y=\left(4x^2-4xy+y^2\right)-\left(8x-4y\right)=\left(2x-y\right)^2-4\left(2x-y\right)=\left(2x-y\right)\left(2x-y-4\right)\)
2) \(2x^3-3x^2+3x-1=x^2\left(2x-1\right)-x\left(2x-1\right)+\left(2x-1\right)=\left(2x-1\right)\left(x^2-x+1\right)\)
Bài 2 Phân tích đa thức sau thành nhân tử
a. x4 + 2x3 − 4x − 4
b. x2(1 − x2) − 4 − 4x2
c. x2 + y2 − x2y2 + xy − x − y
d* a3 + b3 + c3 − 3abc
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
phân tích đa thức thành nhân tử
a/ x2 - 4x + 4 – y2 e/ 25x2 - 4y2
b/ 4x4 + 8x3 + 4x2 f/ x2 + 7x + 12
c/ x3y2 – 2x2y3 + xy4 i/ x2 - 5x - 14
d/ x2 - y2 – 7x + 7y
giúp mình với mình đang cần gấp ạ
\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)
Bài 3 : Phân tích đa thức thành nhân tử
a, x3 + 4x2 + 4x -xz2
b, x3 - 4x2 + 4x - 9y2
a: \(=x\left(x^2+4x+4-z^2\right)\)
\(=x\left(x+2-z\right)\left(x+2+z\right)\)
phân tích thành nhân tử: 4x2-4x+1-(2x-1)b+\(\dfrac{b^2}{4}\)
\(4x^2-4x+1-\left(2x-1\right)b+\dfrac{b^2}{4}\)
\(=\left(2x-1\right)^2-2.\left(2x-1\right).\left(\dfrac{1}{2}b\right)+\left(\dfrac{b}{2}\right)^2\)
\(=\left(2x-1-\dfrac{1}{2}b\right)^2\)
Ta có: \(\left(4x^2-4x+1\right)-\left(2x-1\right)b+\dfrac{b^2}{4}\)
\(=\left(2x-1\right)^2-2\cdot\left(2x-1\right)\cdot\dfrac{1}{2}b+\left(\dfrac{1}{2}b\right)^2\)
\(=\left(2x-\dfrac{1}{2}b-1\right)^2\)
Phân tích thành nhân tử:
A = (6x - 3y) + (4x2 - 4xy + y2)
B= 9x2 - (y2 - 4y + 4)
C= -25x2 + y2 - 6y + 9
D= x2 - 4x - y2 - 8y -12
\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(2+2x-y\right)\)
\(B=9x^2-\left(y^2-4y+4\right)=9x^2-\left(y-2\right)^2=\left(3x-y+2\right)\left(3x+y-2\right)\)
\(C=-25x^2+y^2-6y+9=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-\left(5x\right)^2=\left(y-3-5x\right)\left(y-3+5x\right)\)\(D=x^2-4x-y^2-8y-12=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)=\left(x-2\right)^2-\left(y+4\right)^2=\left(x-2-y-4\right)\left(x-2+y+4\right)=\left(x-y-6\right)\left(x+y+2\right)\)
a: Ta có: \(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\)
\(=3\left(2x-y\right)+\left(2x-y\right)^2\)
\(=\left(2x-y\right)\left(2x-y+3\right)\)
b: Ta có: \(B=9x^2-\left(y^2-4y+4\right)\)
\(=9x^2-\left(y-2\right)^2\)
\(=\left(3x-y+2\right)\left(3x+y-2\right)\)
Phân tích đa thức thành nhân tử:
a) 7x-14y
b) 4x2 - 4x +1
c) x2 + 6x + 9 - y2
a: \(7x-14y=7\left(x-2y\right)\)
b: \(4x^2-4x+1=\left(2x-1\right)^2\)
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
g. 10x(x-y)-6y(y-x)
=10x(x-y)+6y(x-y)
=(x-y)(10x+6y)
h.x2-4x-5
=(x-5)(x+1)
i.x4-y4 = (x2-y2)(x2+y2)
B2.
a.5(x-2)=x-2
⇔5(x-2)-(x-2)=0
⇔4(x-2)=0
⇔x=2
b.3(x-5)=5-x
⇔3(x-5)+(x-5)=0
⇔4(x-5)=0
⇔x=5
c.(x+2)2-(x+2)(x-2)=0
⇔(x+2)[(x+2)-(x-2)]=0
⇔4(x+2)=0
⇔x=-2