Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thu Phương
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 20:05

undefined

do khanh hoa
Xem chi tiết
anonymous
17 tháng 12 2020 lúc 11:54

Ta có:

\(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left[\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right]\\ =\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\\ =2:\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Miinhhoa
17 tháng 12 2020 lúc 12:05

P=\(\left(\dfrac{\sqrt{x^3}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)

P=\(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left[\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\right]\)

P=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)

P=\(\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)

P=\(\dfrac{2\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Hiền Nguyễn
Xem chi tiết
Hải Yến Lê
Xem chi tiết
An Thy
30 tháng 6 2021 lúc 10:03

ĐKXĐ: \(x>0,x\ne1\)

\(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

missing you =
30 tháng 6 2021 lúc 10:04

\(P=\left(\dfrac{x^2\sqrt{x}+x^2-x-\sqrt{x}-x^2\sqrt{x}+x^2-x+\sqrt{x}}{x^2-x}\right)\)

\(:\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)

\(=\dfrac{2x^2-2x}{x^2-x}:\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=2.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

thu dinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2021 lúc 13:45

Ta có: \(P=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\sqrt{x}+1\)

Vinne
Xem chi tiết
:vvv
Xem chi tiết
quang
Xem chi tiết
Akai Haruma
15 tháng 4 2023 lúc 22:00

Đoạn $x\sqrt{x}-a$ là sao vậy bạn? Có nhầm lẫn gì không?

Nguyễn Lê Phước Thịnh
15 tháng 4 2023 lúc 23:19

\(=\left(\sqrt{x}+1-\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)

Quynh Existn
Xem chi tiết
Akai Haruma
17 tháng 7 2021 lúc 22:31

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

Akai Haruma
17 tháng 7 2021 lúc 22:38

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

Akai Haruma
17 tháng 7 2021 lúc 22:40

3. ĐKXĐ: $a\geq 0; a\neq 1$

\(C=\frac{\sqrt{a}(\sqrt{a}+1)-\sqrt{a}}{(\sqrt{a}+1)(\sqrt{a}-1)}:\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}\)

\(\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}:\frac{1}{\sqrt{a}-1}=\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}.(\sqrt{a}-1)=\frac{a}{\sqrt{a}+1}\)

 

Ahihi
Xem chi tiết
Hquynh
27 tháng 4 2023 lúc 21:25

loading...