Giả sử: a,b >0 và m,n ∈ Z*
Tìm min của: \(P=ax^m+b\dfrac{1}{x^n}
\) với x>0
Giả sử x = \(\dfrac{a}{m}\); y = \(\dfrac{b}{m}\)(a;b;m ϵ Z, m ≠ 0 và x < y). Hãy chứng tỏ rằng nếu chọn z = \(\dfrac{a+b}{2m}\) thì x < y < z.
Giả sử: a,b>0 và m,n là các số nguyên dương
Tìm GTNN của \(P=a.x^m+b.\frac{1}{x^n}\) với x>0
\(P=a.x^m+b.\frac{1}{x^n}\)
Áp dụng BĐT Co-si cho 2 số dương \(a.x^m\)và \(b.\frac{1}{x^n}\), ta có :
\(a.x^m+b.\frac{1}{x^n}\ge2\sqrt{\frac{ab.x^m}{x^n}}\)
\(\Rightarrow a.x^m+b.\frac{1}{x^n}\ge2\sqrt{ab.x^{m-n}}\)
Vì \(2\sqrt{ab.x^{m-n}}\)Luôn \(\ge0\)\(\Rightarrow\)\(P_{min}=0\Leftrightarrow2\sqrt{ab.x^{m-n}}=0\)
Mà \(a,b>0\Rightarrow x^{m-n}=0\Leftrightarrow m-n=0\Rightarrow m=n\)
Vậy \(P_{min}=0\Leftrightarrow m=n\)
Giả sử x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)(a, b, m \(\in\) Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\dfrac{a+b}{2m}\) thì ta có x < z < y
Hướng dẫn: Sử dụng tính chất: Nếu a, b, c \(\in\) Z và a < b thì a + c < b + c
Giúp mk nốt câu này nhé
a) Cho x, y \(\ge\)0 thỏa mãn \(x^2+y^2\le2\). Tìm Min của \(M=\dfrac{1}{1+x}+\dfrac{1}{1+y}\)
b) Cho x, y, z > 0 thỏa mãn x + y + z = 4. Chứng minh rằng: \(\dfrac{1}{xy}+\dfrac{1}{yz}\ge1\)
Bài 1: Cho x,y,z >0 thỏa mãn:
xy+yz+xz \(\ge\)2xyz
Tìm Max A= (x-1)(y-1)(z-1)
Bài 2: Cho a,b,c >0 thỏa mãn:
\(\dfrac{c+1}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)
Tìm Min M= (a+1)(b+1)(c+1)
1. Vì x, y, z > 0
\(xy+yz+zx\ge2xyz\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\)
Suy ra:
\(\dfrac{1}{x}\ge1-\dfrac{1}{y}+1-\dfrac{1}{z}=\dfrac{y-1}{y}+\dfrac{z-1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(z-1\right)}{yz}}\). (1)
Tương tự \(\dfrac{1}{y}\ge2\sqrt{\dfrac{\left(z-1\right)\left(x-1\right)}{zx}}\) (2)
và \(\dfrac{1}{z}\ge2\sqrt{\dfrac{\left(x-1\right)\left(y-1\right)}{xy}}\) (3)
Nhân (1), (2), (3) với nhau theo vế ta được
\(\dfrac{1}{xyz}\ge\dfrac{8\left(x-1\right)\left(y-1\right)\left(z-1\right)}{xyz}\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{2}\)
\(\dfrac{c+1}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)
\(\Leftrightarrow1-\dfrac{2}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)
\(\Leftrightarrow1-\dfrac{1}{a+2}\ge\dfrac{3}{b+4}+\dfrac{2}{c+3}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\)
Hay \(\dfrac{a+1}{a+2}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\) (1)
Tương tự \(\dfrac{b+1}{b+4}\ge2\sqrt{\dfrac{2}{\left(c+3\right)\left(a+2\right)}}\) (2)
và \(\dfrac{c+1}{c+3}\ge2\sqrt{\dfrac{3}{\left(a+2\right)\left(b+4\right)}}\) (3)
Nhân (1), (2), (3) vế theo vế
\(\dfrac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\ge8.\dfrac{6}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge48\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=3\end{matrix}\right.\)
Cho các số a, b, c và x, y, z thoả mãn:
x = by+cz; y = ax+cz; z = ax+by và x+y+z khác 0; x.y.z khác 0.
Hãy tính giá trị của biểu thức: A = \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\).
Ta có: \(x+y+z=by+cz+ax+cz+ax+by=2\left(ax+by+cz\right)\)Thay \(z=ax+by\)
\(\Rightarrow x+y+z=2\left(z+cz\right)=2z\left(1+c\right)\)
\(\Rightarrow\dfrac{1}{1+c}=\dfrac{2z}{x+y+z}\)
Tương tự:\(\left\{{}\begin{matrix}\dfrac{1}{1+a}=\dfrac{2x}{x+y+z}\\\dfrac{1}{1+b}=\dfrac{2y}{x+y+z}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)Vậy A=2
Cho x,y,z là các số khác 0 và x + y = z khác 0 thoả mãn x = by + cz; y = ax + cz; z = ax + by. Tính giá trị biểu thức A = \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)
Ta có:\(\left\{{}\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)
\(\Leftrightarrow x+y+z=2\left(ax+by+cz\right)\)
Thay \(x=by+cz\) vào biểu thức ta được:
\(x+y+z=2\left(ax+x\right)=2x\left(a+1\right)\)
\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{2x}{2x\left(1+a\right)}=\dfrac{2x}{x+y+z}\)
CMTT và cộng theo vế suy ra A=2
Giả sử x = a/m ; y = b/m (a,b,m thuộc z, m>0) và x <y . hãy chứng tỏ rằng x<z<y với z= a+b/2m
Đây là một số bất đẳng thức trích từ một số đề thi vào chuyên,rất mong nhận được lời giải từ mọi người :
Bài 1:Cho x,y,z >0 thỏa mãn x+y+z=1
Tìm Max Q= \(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Bài 2:Cho x,y,z>0 thỏa mãn :x+y+z=1
Chứng minh:\(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
Bài 3:Cho x,y,z>8
Tìm Min P=\(\dfrac{x}{\sqrt{y+z}-4}+\dfrac{y}{\sqrt{z+x}-4}+\dfrac{z}{\sqrt{x+y}-4}\)
Bài 4: Cho a,b,c>0 thỏa mãn (a+b)(b+c)(c+a)=1
CMR: ab+bc+ca\(\le\dfrac{3}{4}\)
Bài 1:
Vì $x+y+z=1$ nên:
\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)
\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)
Áp dụng BĐT Bunhiacopxky:
\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)
\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Vậy $Q$ max bằng $1$
Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$
Bài 2:
Vì $x+y+z=1$ nên:
\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)
\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)
\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)
Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)
\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)
Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)
Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)
Dấu bằng xảy ra khi $3x=3y=3z=1$
Bài 4:
Ta có một đẳng thức quen thuộc là:
\(1=(a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc(*)\)
Mà theo AM-GM:
\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{ab.bc.ac}=9abc\)
\(\Rightarrow abc\leq \frac{(a+b+c)(ab+bc+ac)}{9}(**)\)
Từ \((*);(**)\Rightarrow 1\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)
Theo tính chất quen thuộc của BĐT AM-GM:
\((a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow a+b+c\geq \sqrt{3(ab+bc+ac)}\)
Do đó:
\(1\geq \frac{8}{9}\sqrt{3(ab+bc+ac)^3}\)
\(\Rightarrow (ab+bc+ac)^3\leq \frac{27}{64}\Rightarrow ab+bc+ac\leq \frac{3}{4}\)
Ta có đpcm