Đây là một số bất đẳng thức trích từ một số đề thi vào chuyên,rất mong nhận được lời giải từ mọi người :
Bài 1:Cho x,y,z >0 thỏa mãn x+y+z=1
Tìm Max Q= \(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Bài 2:Cho x,y,z>0 thỏa mãn :x+y+z=1
Chứng minh:\(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
Bài 3:Cho x,y,z>8
Tìm Min P=\(\dfrac{x}{\sqrt{y+z}-4}+\dfrac{y}{\sqrt{z+x}-4}+\dfrac{z}{\sqrt{x+y}-4}\)
Bài 4: Cho a,b,c>0 thỏa mãn (a+b)(b+c)(c+a)=1
CMR: ab+bc+ca\(\le\dfrac{3}{4}\)
Bài 1:
Vì $x+y+z=1$ nên:
\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)
\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)
Áp dụng BĐT Bunhiacopxky:
\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)
\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Vậy $Q$ max bằng $1$
Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$
Bài 2:
Vì $x+y+z=1$ nên:
\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)
\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)
\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)
Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)
\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)
Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)
Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)
Dấu bằng xảy ra khi $3x=3y=3z=1$
Bài 4:
Ta có một đẳng thức quen thuộc là:
\(1=(a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc(*)\)
Mà theo AM-GM:
\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{ab.bc.ac}=9abc\)
\(\Rightarrow abc\leq \frac{(a+b+c)(ab+bc+ac)}{9}(**)\)
Từ \((*);(**)\Rightarrow 1\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)
Theo tính chất quen thuộc của BĐT AM-GM:
\((a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow a+b+c\geq \sqrt{3(ab+bc+ac)}\)
Do đó:
\(1\geq \frac{8}{9}\sqrt{3(ab+bc+ac)^3}\)
\(\Rightarrow (ab+bc+ac)^3\leq \frac{27}{64}\Rightarrow ab+bc+ac\leq \frac{3}{4}\)
Ta có đpcm
Bài 3:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{x^2}{x\sqrt{y+z}-4x}+\frac{y^2}{y\sqrt{z+x}-4y}+\frac{z^2}{z\sqrt{x+y}-4z}\)
\(\geq \frac{(x+y+z)^2}{(x\sqrt{y+z}+y\sqrt{z+x}+z\sqrt{x+y})-4(x+y+z)}\)
Áp dụng BĐT Bunhiacopxky:
\((x\sqrt{y+z}+y\sqrt{z+x}+z\sqrt{x+y})^2\leq (x+y+z)(xy+xz+yz+yx+zx+zy)\)
\(\Rightarrow x\sqrt{y+z}+y\sqrt{z+x}+z\sqrt{x+y}\leq \sqrt{2(x+y+z)(xy+yz+xz)}\leq \sqrt{\frac{2}{3}(x+y+z)^3}\)
(theo BĐT AM-GM)
Do đó:
\(P\geq \frac{(x+y+z)^2}{\sqrt{\frac{2}{3}(x+y+z)^3}-4(x+y+z)}\). Đặt \(\sqrt{\frac{2}{3}(x+y+z)}=t(t>4)\)
Khi đó: \(P\geq \frac{3}{2}\frac{t^2}{t-4}=\frac{3}{2}(t+4+\frac{16}{t-4})=\frac{3}{2}[t-4+\frac{16}{t-4}+8]\)
\(\geq \frac{3}{2}[2\sqrt{16}+8]=24\) (AM-GM)
Vậy \(P_{\min}=24\Leftrightarrow x=y=z=32\)