Giải phương trình
a.\(\sqrt{x-4\sqrt{x+4}}=4\)
b.\(\sqrt{x^2-5x+6}=3\sqrt{x-3}+2\sqrt{x-2}-6\)
GIẢI PHƯƠNG TRÌNH
a) \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b) \(\sqrt{9x^2+12x+4}=4x\)
c) \(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
d) \(\sqrt{5x-6}-3=0\)
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(a,\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\left(dk:x\ge2\right)\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\left(tmdk\right)\)
b,\(\sqrt{9x^2-12x+4=3x\left(dk:x\ge0\right)}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x\)
\(\Leftrightarrow\left|3x-2\right|=3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=3x\\3x-2=-3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=\dfrac{1}{3}\left(tmdk\right)\end{matrix}\right.\)
Các câu còn lại làm tương tự nhé
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
* giải phương trình
a. \(\sqrt{\left(x-3\right)^2}=2\)
b.\(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
a) Ta có: \(\sqrt{\left(x-3\right)^2}=2\)
\(\Leftrightarrow\left|x-3\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b) ĐKXĐ: \(x\ge-2\)
Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+\dfrac{4}{5}\cdot5\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7(thỏa ĐK)
a) \(\Leftrightarrow\left|x-3\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vậy:.....
b) ĐKXĐ: x ≥ -2
\(\Leftrightarrow\sqrt{9}.\sqrt{x+2}-5.\sqrt{x+2}+\dfrac{4}{5}.\sqrt{25}.\sqrt{x+2}=6\)
<=> \(\sqrt{x+2}.\left(3-5+\dfrac{4}{5}.5\right)=6\)
\(\Leftrightarrow2.\sqrt{x+2}=6\)
\(\Leftrightarrow\sqrt{x+2}=3\)
<=> x + 2 = 9
<=> x = 7
Tham khảo ạ:
a) Ta có: √(x−3)2=2(x−3)2=2
⇔|x−3|=2⇔|x−3|=2
⇔[x−3=2x−3=−2⇔[x=5x=1⇔[x−3=2x−3=−2⇔[x=5x=1
b) ĐKXĐ: x≥−2x≥−2
Ta có: ⇔3√x+2−5√x+2+45⋅5√x+2=6⇔3x+2−5x+2+45⋅5x+2=6
⇔2√x+2=6⇔2x+2=6
⇔x+2=9⇔x+2=9
hay x=7(thỏa ĐK)
Giải các phương trình
a) \(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right)\)
b) \(5x^2-3x+1=2x+31\)
c) \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right)\)
a: \(x^2\cdot2\sqrt{3}+x+1=\sqrt{3}\cdot\left(x+1\right)\)
=>\(x^2\cdot2\sqrt{3}+x\left(1-\sqrt{3}\right)+1-\sqrt{3}=0\)
\(\text{Δ}=\left(1-\sqrt{3}\right)^2-4\cdot2\sqrt{3}\left(1-\sqrt{3}\right)\)
\(=4-2\sqrt{3}-8\sqrt{3}\left(1-\sqrt{3}\right)\)
\(=4-2\sqrt{3}-8\sqrt{3}+24=28-10\sqrt{3}=\left(5-\sqrt{3}\right)^2>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x_1=\dfrac{-\left(1-\sqrt{3}\right)-\left(5-\sqrt{3}\right)}{2\cdot2\sqrt{3}}=\dfrac{-1+\sqrt{3}-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\\x_2=\dfrac{-\left(1-\sqrt{3}\right)+5-\sqrt{3}}{2\cdot2\sqrt{3}}=\dfrac{4}{4\sqrt{3}}=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)
b: \(5x^2-3x+1=2x+31\)
=>\(5x^2-3x+1-2x-31=0\)
=>\(5x^2-5x-30=0\)
=>\(x^2-x-6=0\)
=>(x-3)(x+2)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
c: \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right)\)
=>\(x^2+2\sqrt{2}x+4-3x-3\sqrt{2}=0\)
=>\(x^2+x\left(2\sqrt{2}-3\right)+4-3\sqrt{2}=0\)
\(\text{Δ}=\left(2\sqrt{2}-3\right)^2-4\left(4-3\sqrt{2}\right)\)
\(=17-12\sqrt{2}-16+12\sqrt{2}=1\)>0
Do đó, phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x_1=\dfrac{-\left(2\sqrt{2}-3\right)-1}{2}=\dfrac{-2\sqrt{2}+3-1}{2}=-\sqrt{2}+1\\x_2=\dfrac{-\left(2\sqrt{2}-3\right)+1}{2}=\dfrac{-2\sqrt{2}+4}{2}=-\sqrt{2}+2\end{matrix}\right.\)
* Giải phương trình
a. \(\sqrt{\left(x-3\right)^2}=2\)
b. \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
* Cho Q= \(\dfrac{1}{x-2\sqrt{x}+3}\)
Tìm giá trị lớn nhất của Q
a) \(\sqrt{\left(x-3\right)^2}=2\Rightarrow\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Rightarrow\sqrt{9\left(x+2\right)}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25\left(x+2\right)}=6\)
\(\Rightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Rightarrow2\sqrt{x+2}=6\Rightarrow\sqrt{x+2}=3\Rightarrow x+2=9\Rightarrow x=7\)
\(Q=\dfrac{1}{x-2\sqrt{x}+3}\)
Ta có: \(x-2\sqrt{x}+3=x-2\sqrt{x}+1+2=\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow\dfrac{1}{x-2\sqrt{x}+3}\le2\Rightarrow Q_{max}=2\) khi \(x=1\)
giải phương trình
a)\(\sqrt{16x+48}+\sqrt{x+3}=15\)
b)\(\sqrt{x^2-4}-3\sqrt{x-2}=0\)
a) ĐKXĐ: x ≥ -3
Phương trình tương đương:
4√(x + 3) + √(x + 3) = 15
⇔ 5√(x + 3) = 15
⇔ √(x + 3) = 15 : 3
⇔ √(x + 3) = 3
⇔ x + 3 = 9
⇔ x = 9 - 3
⇔ x = 6 (nhận)
Vậy S = {6}
b) ĐKXĐ: x ≥ 2
Phương trình tương đương:
√[(x - 2)(x + 2)] - 3√(x - 2) = 0
⇔ √(x - 2)√(x + 2 - 3) = 0
⇔ √(x - 2)√(x - 1) = 0
⇔ √(x - 2) = 0 hoặc √(x - 1) = 0
*) √(x - 2) = 0
⇔ x - 2 = 0
⇔ x = 2 (nhận)
*) √(x - 1) = 0
⇔ x - 1 = 0
⇔ x = 1 (loại)
Vậy S = {2}
Giải các phương trình
a.\(x^4-5x^2+4=0\)
b.\(x-5\sqrt{x}-6=0\)
c.\(4x^4+7x^2-2=0\)
a: =>(x-1)(x+1)(x-2)(x+2)=0
hay \(x\in\left\{1;-1;2;-2\right\}\)
b: \(\Leftrightarrow\sqrt{x}-6=0\)
hay x=36
c: =>(2x+1)(2x-1)=0
hay \(x\in\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
Giải phương trình
a) \(\sqrt{2x-5}=\sqrt{x+3}\)
b) \(\sqrt{2x^2-x+4}-2=x\)
c) \(\sqrt{1-x}=\sqrt{3x+2}\)
d) \(\sqrt{2x-3}=\sqrt{x-2}\)
e) \(\sqrt{x-2}-\sqrt{3+2x}=0\)
Giải phương trình:
a) \(x + \sqrt{9 -x^2} = 3 + 5x\sqrt{9 - x^2}\)
b) \(3\sqrt{1 - x^2} = 5\sqrt{1 + x} - 4\sqrt{1 - x} + x + 6\)
c) \(x + 2 + 4\sqrt{x^2 - x + 2} = 2\sqrt{6x^2 - x + 14}\)
giải phương trình :
a,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
b, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
c, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)