Cho x + y = 1. Tính giá trị nhỏ nhất của A= x3 + y3 + x.y
Cho x+y=5 và x.y=4 . Hãy tính giá trị của biểu thức A=x3+y3
\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.5.4=65\)
bài 5 tính giá trị của biểu thức
a) A=-x3 + 6x2 -12x + 8 tại x=-28
b) B=8x3+12x2 + 6x + 1 tại x=\(\dfrac{1}{2}\)
bài 6
a)tính bằng cách hợp lí 113 -1
b) tính giá trị biểu thức x3 - y3 biết x-y =6 x.y=9
Bài 5
a) A = -x³ + 6x² - 12x + 8
= -x³ + 3.(-x)².2 - 3.x.2² + 2³
= (-x + 2)³
= (2 - x)³
Thay x = -28 vào A ta được:
A = [2 - (-28)]³
= 30³
= 27000
b) B = 8x³ + 12x² + 6x + 1
= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³
= (2x + 1)³
Thay x = 1/2 vào B ta được:
B = (2.1/2 + 1)³
= 2³
= 8
Bài 6
a) 11³ - 1 = 11³ - 1³
= (11 - 1)(11² + 11.1 + 1²)
= 10.(121 + 11 + 1)
= 10.133
= 1330
b) Đặt B = x³ - y³ = (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + 3xy)
= (x - y)[(x - y)² + 3xy]
Thay x - y = 6 và xy = 9 vào B ta được:
B = 6.(6² + 3.9)
= 6.(36 + 27)
= 6.63
= 378
Bài 6 :
a) \(11^3-1=\left(11-1\right)\left(11^2+11+1^2\right)\)
\(\)\(=10.\left(121+12\right)\)
\(=10.133\)
\(=1330\)
b) \(\left\{{}\begin{matrix}x-y=6\\xy=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2xy=36\\xy=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2.18=36\\xy=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=72\\xy=9\end{matrix}\right.\)
Ta có :
\(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)
\(=6.\left(72+9\right)\)
\(=6.81\)
\(=486\)
Cho x + y = 1 tìm giá trị nhỏ nhất của biểu thức M = x3 + y3
Cho 2 số thực x;y thỏa mãn x , y ≥ 1 và log 3 x + 1 y + 1 y + 1 = 9 − x − 1 y + 1 Biết giá trị nhỏ nhất của biểu thức P = x 3 + y 3 − 57 x + y là một số thực có dạng a + b 7 , a , b ∈ ℤ . Tính giá trị của a+b
A. -28
B. -29
C. -30
D. -31
áp án B
Ta có: log 3 x + 1 y + 1 y + 1 = 9 − x − 1 y + 1 ⇔ y + 1 log 3 x + 1 y + 1 + x − 1 y + 1 = 9
⇔ y + 1 log 3 c + 1 y + 1 + x + 1 y + 1 − 2 y = 11
⇔ y + 1 log 3 c + 1 y + 1 − 2 = 9 − x + 1 y + 1 *
Nếu x + 1 y + 1 > 9 ⇒ V T * > 0 ; V P * < 0
Ngược lại nếu x + 1 y + 1 < 9 ⇒ V T * < 0 ; V P * > 0
Do đó * ⇔ x + 1 y + 1 = 9 ⇔ x y + x + y = 8
Khi đó P = x + y 3 − 3 x y x + y − 57 x + y = x + y 3 − 3 8 − x − y x + y − 57 x + y
Đặt t = x + y ≥ 2 ⇒ f t = t 3 − 3 8 − t t − 57 t = t 3 + 3 t 2 − 81 t
⇒ f ' t = 3 t 2 + 6 t − 81 = 0 ⇒ t = − 1 + 2 7 ⇒ P min = f − 1 + 2 7 = 83 − 112 7 ⇒ a + b = − 29
Cho x,y là số dương thỏa mãn x+y<1. Tìm giá trị nhỏ nhất của biểu thức: A= 1/x3+3xy2 + 1/y3+3x2y
a) Cho x + y = 1. Tính giá trị biểu thức A = x3 + y3 +3xy
b) Cho x - y = 1. Tính giá trị biểu thức B = x3 - y3 -3xy
a) \(A=x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3\) \(=1\)
b) \(B=x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\) \(=1\)
cho x+y=1 tìm giá trị nhỏ nhất M=x3+y3+2xy
Lời giải:
$M=x^3+y^3+2xy=(x+y)(x^2-xy+y^2)+2xy=x^2-xy+y^2+2xy$
$=x^2+y^2+xy=\frac{1}{4}(x-y)^2+\frac{3}{4}(x+y)^2=\frac{1}{4}(x-y)^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$
Cho hai số thực x,y thay đổi thoả mãn x+y=1. Giá trị nhỏ nhất của x 3 + y 3 + 2 x y bằng
A. - 1 4
B. 1 4
C. 5 4
D. 3 4
Cho hai số x,y \(\ge\)0 thay đổi và thỏa mãn x+y=2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
P= x(x3 + x2 + x + 1004y) + y(y3 + y2 + y +1004x) + 1
Tính bằng cách hợp lí.
a)Tính 113-1
b)Tính giá trị biểu thức x3-y3 biết x-y=6 và x.y=20
a) \(11^3-1\)
\(=11^3-1^3\)
\(=\left(11-1\right)\left(11^2+11\cdot1+1^2\right)\)
\(=10\cdot\left(121+11+1\right)\)
\(=10\cdot\left(132+1\right)\)
\(=10\cdot133\)
\(=1330\)
b) Ta có:
\(x^3-y^3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)\)
Thay \(x-y=6\) và \(xy=20\) ta có:
\(6^3+3\cdot20\cdot6=216+60\cdot6=216+360=576\)
a: 11^3-1=(11-1)(11^2+11+1)
=10*(121+12)
=10*133=1330
b: x^3-y^3=(x-y)^3+3xy(x-y)
=6^3+3*20*6
=216+360
=576