\(\dfrac{3x+2}{3}\le\dfrac{x-4}{7}\) help em với mn ơi
\(\dfrac{3x+2}{3}\le\dfrac{x-4}{7}\) help em vs mn ơi
`(3x+2)/3 <= (x-4)/7`
`<=>7(3x+2) <= 3(x-4)`
`<=> 21x+14<=3x-12`
`<=>18x <= -26`
`<=> x <=-13/9`
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\) help em vs mn ơi
ĐK: ` x\ne \pm 3`
`(x+1)/(x-3)+(x-1)/(x+3)=(x+6)/(x^2-9)`
`<=>(x+1)(x+3)+(x-1)(x-3)=x+6`
`<=>x^2+4x+3+x^2-4x+3=x+6`
`<=>2x^2+6=x+6`
`<=>2x^2-x=0`
`<=>x(2x-1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy `S={0; 1/2}`.
ĐKXĐ: x ≠ -3, x ≠ 3
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+3\right)+\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow x^2+4x+3+x^2-4x+3=x+6\)
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)
Vậy...
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\)(a)
ĐKXĐ\(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
(a)\(\Leftrightarrow\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\left(x+1\right).\left(x+3\right)+\left(x-1\right).\left(x-3\right)=x+6\)
\(\Leftrightarrow x^2+3x+x+3+x^2-3x-x+3=x+6\)
\(\Leftrightarrow x^2+3x+x+x^2-3x-x-x=6-3-3\)
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(thỏa-mãn-ĐKXĐ\right)\\x=\dfrac{1}{2}\left(thỏa-mãn-ĐKXĐ\right)\end{matrix}\right.\)
Vậy S = \(\left\{0;\dfrac{1}{2}\right\}\)
\(\dfrac{2x-5}{3}=\dfrac{x+2}{2}\) help em vs mn ơi
\(\left(2x-5\right).2=\left(x+2\right).3\)
\(\Rightarrow4x-10=3x+6\)
\(\Rightarrow x=16\)
\(\dfrac{2x+5}{3}=\dfrac{x+2}{2}\)
MTC : 6
Quy đồng mẫu thức :
\(\Rightarrow\) \(\dfrac{2\left(2x+5\right)}{6}=\)\(\dfrac{3\left(x+2\right)}{6}\)
Suy ra : 2(2x + 5) = 3(x + 2)
\(\Leftrightarrow\) 4x + 10 = 3x + 6
\(\Leftrightarrow\) 4x + 10 - 3x - 6 = 0
\(\Leftrightarrow\) x + 4 = 0
\(\Leftrightarrow\) x = - 4
Vậy S = \(\left\{-4\right\}\)
Chúc bạn học tốt
\(\dfrac{3-3x}{5}\)=\(\dfrac{x-1}{2}\) help em vs mn
Giải hệ bpt
1) \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
2) \(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
3) \(-1< \dfrac{10x^2-3x-2}{-x^2+3x-2}< 1\)
1.
\(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-7\le x^2+1\\-4x^2-4\le x^2-2x-7\end{matrix}\right.\) (Do \(x^2+1>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-4\le x\le-\dfrac{3}{5}\end{matrix}\right.\)
2.
\(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13x^2-26x-26\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) (Do \(x^2-5x+7>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{11}{4}\\x\le-1\end{matrix}\right.\\x\le3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{4}\le x\le3\\x\le-1\end{matrix}\right.\)
\(\dfrac{3}{5}x^3y\left(10xy^3-\dfrac{5}{3}y^2+\dfrac{5}{6}xy\right)\) help em vs mn ơi
\(=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\)
1) Giải các phương trình sau :
a) \(\dfrac{2x+1}{3}-\)\(\dfrac{6x-1}{4}\) = \(\dfrac{2x+1}{12}\)
b) (4x+7)(x-3) - x\(^2\) = 3x (x+2)
mn giúp em với ạ
a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)
=>8x+4-18x+3=2x+1
=>-10x+7=2x+1
=>-12x=-6
hay x=1/2
b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)
=>5x-21=6x
=>-x=21
hay x=-21
\(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)
MN help mình với
Ta có:2x+6=2(x+3);x2+3x=x(x+3)
➞MTC:2x(x+3)
Ta co:(x+1/2x+6)+(2x+3/x2+3x)={[(x+1)x]+[(2x+3)2]}/2x(x+3)=x2+5x+6/2x(x+3)=(x+2)(x+3)/2x(x+3)=x+2/2x
Giải bất phương trình sau
a)\(\dfrac{2-x}{3}\)\(-x-2\le\dfrac{x-17}{2}\)
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)
\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)
\(\Leftrightarrow4-2x-6x-12\le3x-51\)
\(\Leftrightarrow-11x\le-43\)
\(\Leftrightarrow x\ge\dfrac{43}{11}\)
Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)
\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)
\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)
\(\Leftrightarrow0x\le-10\) (vô lý)
Vậy \(S=\varnothing\)