Tính tổng sau:
A=1+2+3+4+...+100
B=2+4+6+8+....+100
Tính tổng sau:
a) 1 - 2 + 3 - 4 + ... + 99 - 100
b) 2 - 4 + 6 - 8 + ... + 48 - 50
c) 1 + 2 - 3 + 4 - ... - 99 + 100
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
Tính tổng sau : A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + ... + 99 - 100
B=1–2- 3+4+5-6-7+8+...+97-98-99+100
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
a.1-2+3-4+......+99-100
b.2-4+6-8+......-48+50
c.1+2-3-4+.......+97+98-99-100
a: 1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
c: 1+2-3-4+....+97+98-99-100
=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)
=(-4)+(-4)+...+(-4)
=(-4)*25=-100
Tính tổng
A) A= 1+2+3+...+100
B) B= 2+4+6+...+120
C) A= 3+5+8+...+99
D) B= 3+6+9+...123
C=[(99-3):3+1].(99+3):2=33.102:2=33.51=1683
B=[(120-2):2+1].(120+2):2=60.122:2=60.61=3660
A=[(100-1):1+1].(100+1):2=100.101:2=50.101=5050
D=[(123-3):3+1].(123+3):2=41.126:2=41.63=2583
vừa nãy cậu chx đăng hết câu hỏi nên mik làm 1 câu
Bài 4: Tính các tổng sau:
a) 1 + 2 + 3 + 4 + ...... + n;
b) 2 +4 + 6 + 8 + .... + 2n;
c) 1 + 3 + 5 + ..... (2n + 1);
d) 1 + 4 + 7 + 10 + ...... + 2005;
e) 2 + 5 + 8 +......+ 2006;
g) 1 + 5 + 9 +....+ 2001.
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)
2) Cho biết kết quả của các biểu thức/lệnh sau:
a) 5489 / 100 % 100
b) 76587 % 100 / 10
c) (5>0) and (3>0) and (7>0) and (5+3>7) and (5+7>3) and (3+7>5)
d) cout << 4 + 5;
e) cout << “4 + 5”;
f) cout << 4 + 5 << 4 * 5;
g) cout << 4+5 << “ “ << 4 * 5;
mí bạn giúp mik với, với lại cái này là codeblock nhé
a: 54
b: 8
d: 9
e: 4+5
f: 920
g: 9 20
Rút gọn tổng sau:
A=1+2^2+2^4+2^6+...+2^98+2^100
\(\Rightarrow4A=2^2+2^4+2^6+...+2^{102}\\ \Rightarrow4A-A=2^2+2^4+...+2^{102}-1-2^2-2^4-...-2^{100}\\ \Rightarrow3A=2^{102}-1\\ \Rightarrow A=\dfrac{2^{102}-1}{3}\)
A= 1 + 2\(^2\) + 2\(^4\) +...+ 2\(^{100}\)
⇔2\(^2\)A=2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)
⇔4A−A=(2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)) − (1+2\(^2\)+2\(^4\)+2\(^6\)+....+2\(^{98}\)+2\(^{100}\))
⇔3A=2\(^{102}\)−1
⇔S=\(\dfrac{2^{102}-1}{3}\)
Rút gọn các tổng sau:
a) A = 2 - 2\(^2\) + 2\(^3\) - 2\(^4\) + ... + 2\(^{99}\) - 2\(^{100}\)
b) B = 1 + 2\(^2\) + 2\(^4\) + ... + 2\(^{98}\) + 2\(^{100}\)
c) C = 1 - 2\(^3\) + 2\(^6\) - 2\(^9\) + ... + 2\(^{60}\) - 2\(^{63}\) + 2\(^{69}\)
d) D = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^4}\) + ... + \(\dfrac{1}{3^{100}}\)
e) E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) - \(\dfrac{1}{4^3}\) + ... + \(\dfrac{1}{4^{98}}\) - \(\dfrac{1}{4^{99}}\) + \(\dfrac{1}{4^{100}}\)
-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.
a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)
\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)
\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)
\(\Rightarrow A=-2^{101}+2\)
b,c) làm tương tự.
d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)
\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)
e) làm tương tự nhưng đổi thành cộng.
1)Tính tổng:
A=1+(-2)+3+(-4)+ ... + 99+ (-100)
2)Tính tổng
A=1 - 2 + 3 - 4 + . . . + 2015 - 2016
3)Tính tổng các số nguyên x thỏa mãn : - 8 ≤ x < 10
4)Tìm số nguyên x, biết :
-5 : (x - 4) là số nguyên
5)Tính tổng
A= 2 - 4 + 6 - 8 + . . . + 98 - 100
6)Tính tổng
A=1 - 2 + 3 - 4 + 5 - 6 + . . . + 2017 - 2018
Các bạn muốn làm câu nào thì làm,thứ 3 mình nộp
1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng
Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]
A= (-1)+(-1)+.... +(-1)
A= (-1).50=(-50)
2,A=(1-2)+(3-4)+.....+(2015-2016)
A=(-1)+(-1)+....+(-1)
A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)
A=(-1).1008=(-1008)
\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=2500-2550=-50\)
Đúng ko ta lâu rồi ko làm.
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)