\(\Rightarrow4A=2^2+2^4+2^6+...+2^{102}\\ \Rightarrow4A-A=2^2+2^4+...+2^{102}-1-2^2-2^4-...-2^{100}\\ \Rightarrow3A=2^{102}-1\\ \Rightarrow A=\dfrac{2^{102}-1}{3}\)
A= 1 + 2\(^2\) + 2\(^4\) +...+ 2\(^{100}\)
⇔2\(^2\)A=2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)
⇔4A−A=(2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)) − (1+2\(^2\)+2\(^4\)+2\(^6\)+....+2\(^{98}\)+2\(^{100}\))
⇔3A=2\(^{102}\)−1
⇔S=\(\dfrac{2^{102}-1}{3}\)