\(\frac{a}{b}\cdot\frac{c}{d}=0\)khi nao
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)và a+b+c+d khác 0. Tính Q=\(\frac{2\cdot a-b}{c+d}+\frac{2\cdot b-c}{d+a}+\frac{2\cdot c-d}{a+b}+\frac{2\cdot d-a}{b+c}\)
cho biết \(\frac{a}{b}+\frac{c}{d}=1;\frac{d}{c}+\frac{e}{f}=1\). Chứng minh \(a\cdot d\cdot f+b\cdot c\cdot e=0\)
cho hai số hữu tỉ \(\frac{a}{b};\frac{c}{d}\)(b > 0 : d >0 ) Chứng tỏ rằng :
a,\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow a\cdot d< b\cdot c\)
b, \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) => đpcm
a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a, ta có:
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)
Từ (1) và (2) => đpcm.
1. cho \(\frac{a}{b}=\frac{c}{d};\)(b,c,d khac 0)
cmr: \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\); \(\frac{a\cdot b}{c\cdot d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
\(\frac{2\cdot a+13\cdot b}{3\cdot a-7\cdot b}=\frac{2\cdot c+13\cdot d}{3\cdot c-7\cdot d}\)
CMR \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)
\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)
\(\Leftrightarrow-14ad+14bc=39ad-39bc\)
\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)
=>ad-bc=0
=>ad=bc
hay a/b=c/d
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
Cho \(\frac{a}{a'}+\frac{b}{b'}=1;\frac{b}{b'}+\frac{c}{c'}=1\). CMR: \(a\cdot b\cdot c+a'\cdot b'\cdot c'=0\)
Ta có: \(\frac{a}{a'}+\frac{b}{b'}=1\)
\(\Rightarrow\frac{a}{a'}.\frac{b}{b'}+\frac{b'}{b}.\frac{b}{b'}=\frac{b}{b'}.\)
\(\Rightarrow\frac{ab}{a'b'}+1=\frac{b}{b'}\) (1).
\(\frac{b}{b'}+\frac{c'}{c}=1\)
\(\Rightarrow\frac{b}{b'}=1-\frac{c'}{c}\) (2).
Từ (1) và (2) => \(\frac{ab}{a'b'}=-\frac{c'}{c}\)
\(\Rightarrow abc=-a'b'c'\)
\(\Rightarrow abc+a'b'c'=0\left(đpcm\right).\)
Vậy \(abc+a'b'c'=0.\)
Chúc bạn học tốt!
Tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR
\(\frac{7\cdot a^3+3\cdot a\cdot b}{11\cdot a^2-8\cdot b^2}=\frac{7\cdot c^2+3\cdot c\cdot d}{11\cdot c^2+8\cdot d^2}\)
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)
\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)
\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)
Tìm các số tự nhiên a, b, c, d thỏa mãn : \(\frac{1}{a\cdot a}+\frac{1}{b\cdot b}+\frac{1}{c\cdot c}+\frac{1}{d\cdot d}=1\)
Ta thấy a, b, c, d > 1 vì nếu một số bằng 1 thì tổng lớn hơn 1
Nếu trong 4 số a, b, c, d có ít nhất 1 số lớn hơn 2 thì tổng đã cho có GTLN là :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}< \frac{1}{4}\cdot4=1\)
Do đó a, b, c, d < 3
Vậy a = b = c = d = 2, ta có :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}=1\) ( đúng )
Cbht
\(\text{= 1}\)
\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)
\(\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}\)= 1
\(4.\frac{1}{4}=1\)
vậy {a ,b ,c ,d} =2
\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)