Phân tích:
a) 8x^4-8x^2+2-18y^2
b) x^3-x^2-y^3+y^2
c) 9x-6x^2-3
Rút gon phân thức a)8x^3+y^3/y^3+2xy^2+y^2-4x^2 b)x^2-2x-8/2x^2+9x+10 c)6x-x^2-5/5x^6-x^7. d)x^3+64/2x^3-8x^2+32x. e) x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
Phân tích đa thức thành nhân tử:
a) x^3 - x^2 + 8x - 8
b) 8x^3 - 8x^2y + 2xy^2
c) (x^2 + y^2 - z^2)^2 - 4x^2y^2
d) (x^2 - y^2 - 5)^2 - 4(x^2y^2 + 4xy + 4)
e) x^3 - y^3 - 3x^2 + 3x - 1
a) (x3-x2)+(8x-8)=x(x-1)+8(x-1)=(x2+8)(x-1)
b) 8x3-8x2y+2xy2=2x(4x2-4xy+y2)
c) (x2+y2-z2)2 - 4x2y2=(x2+y2-z2)2 - (2xy)2=(x2+y2-z2-2xy)(x2+y2-z2+2xy)
hãy phân tích các câu sau thành nhân tử:
a)x^2+xy+y -1 b) 4 -x^2+2xy -y^2 c) 8x^2 -18y^2
d) 8x^3 -4x^2 -6xy -9y^2 -27y^3
e) 4x^2 -x -3
f) 4x^2 -8x +3
a) x2 + xy + y - 1 = (x2 - 1) + (xy + y) = (x - 1)(x + 1) + y(x + 1) = (x + 1)(x + y - 1)
b) 4 - x2 + 2xy - y2 = 4 - (x2 - 2xy + y2) = 4 - (x - y)2 = (x - y + 2)(4 - x + y)
c) 8x2 - 18y2 = 2(4x2 - 9y2) = 2[(2x)2 - (3y)2] = 2(2x - 3y)(2x + 3y)
d) 8x3 - 4x2 - 6xy - 9y2 - 27y3
= (8x3 - 27y3) - (4x2 + 6xy + 9y2)
= (2x - 3y)(4x2 + 6xy + 9y2) - (4x2 + 6xy + 9y2)
= (2x - 3y - 1)(4x2 + 6xy + 9y2)
e) 4x2 - x - 3 = 4x2 - 4x + 3x - 3 = 4x(x - 1) + 3(x - 1) = (x - 1)(4x + 3)
f) 4x2 - 8x + 3 = 4x2 - 2x - 6x + 3 = 2x(2x - 1) - 3(2x - 1) = (2x - 3)(2x - 1)
Bài 1 : Phân tích đa thức thành nhân tử
a) 5x^2y-20xy^2
b) 1-8x+16x^2-y^2
c) 4x-4-x^2
d) x^3-2x^2+x-xy^2
e)27-3x^2
f) 2x^2+4x+2-2y^2
Bài 2: tìm x, biết
a) x^2(x-2023)-2023+x=0
b) -x(x-4)+(2x^3-4x^2-9x):x=0
c) x^2+2x-3x-6=0
d) 3x(x-10)-2x+20=0
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
Bài 2
a) x²(x - 2023) - 2023 + x = 0
x²(x - 2023) - (x - 2023) = 0
(x - 2023)(x² - 1) = 0
x - 2023 = 0 hoặc x² - 1 = 0
*) x - 2023 = 0
x = 2023
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 1; x = 2023
b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0
-x² + 4x + 2x² - 4x - 9 = 0
x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
c) x² + 2x - 3x - 6 = 0
(x² + 2x) - (3x + 6) = 0
x(x + 2) - 3(x + 2) = 0
(x + 2)(x - 3) = 0
x + 2 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x - 3 = 0
x = 3
Vậy x = -2; x = 3
d) 3x(x - 10) - 2x + 20 = 0
3x(x - 10) - (2x - 20) = 0
3x(x - 10) - 2(x - 10) = 0
(x - 10)(3x - 2) = 0
x - 10 = 0 hoặc 3x - 2 = 0
*) x - 10 = 0
x = 10
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = 2/3; x = 10
Question Expandand simplify: 1. 8(x+5)-3(2x+7)
2. a(2b+c)+b(3c-2a)
3. 2y(y+5x)+x(3x+4y)
answer , 1. 8(x+5)-3(2x+7)=8x+40-6x+21=2x+61
2. a(2b+c)+b(3c-2a)=2ab+ac+3bc-2ab=ac+3bc=3abc^(2)
3. 2y(y+5x)+x(3x+4y)=2y^(2)+10xy+9x^(2)+4xy=9x^(2)+2y^(2)+14xy
a Explain what he has done wrong.
b work out the correct answer
1. x^4+x^2-2=0; 2. x^3+3x^2+6x+4=0; 3. x^3-6x^2+8x=0; 4. x^4-8x^3-9x^2=0 Giúp với (;~;)
1/ \(x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
2/ \(x^3+3x^2+6x+4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))
\(\Leftrightarrow x=-1\).
3/ \(x^3-6x^2+8x=0\)
\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)
4/ \(x^4-8x^3-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)
8X^2 - 6XY( 2X-Y) + 6X= 2Y^3 -6Y^2+ 18Y-14
Y^2 - 6Y + 5 + căn bậc ba (Y+1) (X^2 + 8) = 0
Bài 4. Thu gọn các đa thức sau:
A=5x^2+3y+6x^2+7y
B=7x^3+6y+6x^3+5y+6^2
C=-8x^5+3y^4-x^5-10y^4
D=x^2+y^2-5x^2-6y^2
A=5x^2+6x^2+3y+7y=11x^2+10y
B=7x^3+6x^3+6y+5y+36=13x^3+11y+36
C=-8x^5-x^5+3y^4-10y^4=-9x^5-7y^4
C=x^2-5x^2+y^2-6y^2=-4x^2-5y^2
a.(x+1)^2-25
b. 1-4x^2
c. 8-27x^3
d. 27+27x+9x^2+x^3
e. 8x^3-12x^2y+6xy^2-y^3
f. x^3+8y^3
g. x^5-3X^4+3x^3-x^2
a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
b: =(1-2x)(1+2x)
c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d: =(x+3)^3
e: \(=\left(2x-y\right)^3\)
f: =(x+2y)(x^2-2xy+4y^2)