Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Trang

Những câu hỏi liên quan
Muichirou Tokitou
Xem chi tiết
Muichirou Tokitou
20 tháng 5 2021 lúc 9:45

câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1

Nguyễn Đình An
20 tháng 5 2021 lúc 9:50

Tk

Bài 2

a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

=  \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)

=  2x + 1

b) 2x + 1 = 0

 2x = -1

 x=\(\dfrac{-1}{2}\)

Nguyễn Đình An
20 tháng 5 2021 lúc 10:04

Tk

Bài 3

a)

f(x) + g(x)

\(x^3-2x+1+\left(2x^2-x^3+x-3\right)\)

\(x^3-2x+1+2x^2-x^3+x-3\)

\(x^3-x^3-2x+x+1-3+2x^2\)

\(-x-2+2x^2\)

f(x) - g(x)

\(x^3-2x+1-\left(2x^2-x^3+x-3\right)\)

\(x^3-2x+1-2x^2+x^3-x+3\)

\(x^3+x^3-2x-x+1+3-2x^2\)

\(2x^3-3x+4-2x^2\)

b)

Thay x = -1, ta có:

\(-\left(-1\right)-2+2\left(-1\right)^2\) = 1

x = -2, ta có

\(2\left(-2\right)^3-3\left(-2\right)+4-2\left(-2\right)^2\)

\(2\cdot\left(-8\right)+6+4-8\) = -14

 

 

linh nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 10:54

\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)

NGUYỄN ANH ĐỨC (ERROR)
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 20:21

a: \(F\left(x\right)=x^3+2x^2+3x+4\)

\(G\left(x\right)=x^3-x^2+3x+1\)

b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)

\(F\left(x\right)-G\left(x\right)=3x^2+3\)

Thanh Phạm
10 tháng 5 2022 lúc 20:22

f(x)=x+2x2+3x+4

g(x)=xtrừ x2+3x+1

ERROR?
10 tháng 5 2022 lúc 20:24

a)

F(x)=x3+2x2+3x+4F(x)=x3+2x2+3x+4

G(x)=x3−x2+3x+1

b)

F(x)+G(x)=2x3+x2+6x+5F(x)+G(x)=2x3+x2+6x+5

F(x)−G(x)=3x2+3

 

 

 

 

TCN❖︵ℝเcɦ cɦøเッ
Xem chi tiết
Yeutoanhoc
10 tháng 4 2021 lúc 18:25

`a,f(x)-g(x)+h(x)`

`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`

`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`

`=0+0+3x+1`

`=3x+1`

`b,f(x)-g(x)+h(x)=0`

`=>3x+1=0`

`=>x=-1/3`

nguyễn thanh hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 20:42

a: \(f\left(x\right)+g\left(x\right)=2x^3-2x^2+4x\)

b: \(f\left(x\right)-g\left(x\right)=-2x^2+2x+2\)

TV Cuber
21 tháng 5 2022 lúc 20:51

a)\(f\left(x\right)+g\left(x\right)=\left(x^3+x^3\right)-2x^2+\left(3x+x\right)+\left(1-1\right)\)

\(f\left(x\right)+g\left(x\right)=2x^3-2x^2+4x\)

b)\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+1-x^3-x+1\)

\(f\left(x\right)-g\left(x\right)=-2x^2+2x+2\)

Thư Lena
Xem chi tiết
chu khải
Xem chi tiết
Nguyễn Tân Vương
26 tháng 5 2022 lúc 14:08

\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

                                    \(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

                               \(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)

                                  \(=2x+1\)

\(\text{b)Vì f(x)-g(x)+h(x)=0}\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x\)        \(=0-1=-1\)

\(\Rightarrow\)   \(x\)        \(=\left(-1\right):2=\dfrac{-1}{2}\)

\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)

Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 21:18

a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)

b: f(x)-g(x)+h(x)=0

\(\Leftrightarrow2x^3+4x-1=0\)

\(\Leftrightarrow x\simeq0,2428\)

Lysr
25 tháng 5 2022 lúc 21:18

a) f(x) - g(x) + h (x) = x3 - 2x2 + 3x + 1 - (x3 + x - 1 ) + (2x2 - 1 )

= x3 - 2x2 + 3x + 1 - x3 - x + 1 + 2x2 - 1

= (x3 - x3) + ( -2x2 + 2x2) + (3x - x) + (1+1 - 1)

= 2x + 1

b) Đặt 2x + 1 = 0

=> 2x = -1

=> x = -1/2

37- Tuấn Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2023 lúc 8:48

Bài 2:

x^3+6x^2+12x+m chia hết cho x+2

=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2

=>m-8=0

=>m=8

nguyễn Thùy Linh
Xem chi tiết
Thái Đào
5 tháng 2 2017 lúc 17:58

a) f(x)-g(x)+h(x)=\(\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

=\(x^3-2x^2+3x+1-x^3+x-1+2x^2-1\)

=\(4x-1\)

Vậy f(x)-g(x)+h(x)=4x-1

Ta có:f(x)-g(x)+h(x)=4x-1=0

=> 4x-1=0

=> 4x=1

=> x=1/4

Vậy để f(x)-g(x)+h(x)=0 thì x=1/4

HOÀNG TÙNG
Xem chi tiết
Toru
4 tháng 9 2023 lúc 12:31

\(a,a^2-2a-4b^2-4b\)

\(=\left(a^2-4b^2\right)-\left(2a+4b\right)\)

\(=\left(a-2b\right)\left(a+2b\right)-2\left(a+2b\right)\)

\(=\left(a+2b\right)\left(a-2b-2\right)\)

\(b,x^3-2x^2+4x-8\)

\(=x^2\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4\right)\)

\(c,x^3+36x-12x^2\)

\(=x^3-6x^2-6x^2+36x\)

\(=x^2\left(x-6\right)-6x\left(x-6\right)\)

\(=\left(x-6\right)\left(x^2-6x\right)\)

\(=x\left(x-6\right)^2\)

\(d,5a^2+3\left(a+b\right)^2-5b^2\)

\(=\left(5a^2-5b^2\right)+3\left(a+b\right)^2\)

\(=5\left(a^2-b^2\right)+3\left(a+b\right)^2\)

\(=5\left(a-b\right)\left(a+b\right)+3\left(a+b\right)^2\)

\(=\left(a+b\right)\left[5\left(a-b\right)+3\left(a+b\right)\right]\)

\(=\left(a+b\right)\left(5a-5b+3a+3b\right)\)

\(=\left(a+b\right)\left(8a-2b\right)\)

\(=2\left(a+b\right)\left(4a-b\right)\)

\(e,x^3-3x^2+3x-1-y^3\)

\(=\left(x^3-3x^2+3x-1\right)-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)

\(=\left(x-y-1\right)\left(x^2+y^2-xy-y+1\right)\)

#Urushi

\(c.\\ x^3+36x-12x^2\\ =x\left(x^2-12x+36\right)\\ =x.\left(x^2-2.x.6+6^2\right)\\ =x.\left(x-6\right)^2\\ ---\\ d.\\ 5a^2+3\left(a+b\right)^2-5b^2\\ =\left(5a^2-5b^2\right)+3\left(a+b\right)^2\\ =5.\left(a^2-b^2\right)+3.\left(a+b\right)\left(a+b\right)\\ =5\left(a+b\right)\left(a-b\right)+3\left(a+b\right)\left(a+b\right)\\ =\left(a+b\right)\left(5a-5b+3a+3b\right)\\ =\left(a+b\right)\left(8a-2b\right)\\ =2\left(a+b\right)\left(4a-b\right)\)

\(e.\\ x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right).y+y^2\right]\\ =\left(x-y-1\right).\left[\left(x^2-2x+1\right)+y\left(x+y-1\right)\right]\)

\(a.\\ a^2-2a-4b^2-4b\\ =\left(a^2-2a+1\right)-\left(4b^2-4b+1\right)\\ =\left(a-1\right)^2-\left(2b-1\right)^2\\ =\left[\left(a-1\right)+\left(2b-1\right)\right].\left[\left(a-1\right)-\left(2b-1\right)\right]\\ =\left(a+2b-2\right)\left(a-2b\right)\)

\(b.\\ x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\ =\left(x^2+4\right)\left(x-2\right)\)