Tìm m, n để đường thẳng mx – 2y = n đi qua điểm A(2;1) và giao điểm của hai đường thẳng (d1): x – 2y = 1, (d2): –3x + y = 7.
cho parabol (P): \(y=\dfrac{1}{4}x^{2}\) và đường thẳng (d): y=mx+n. Tìm giá trị của m,n để (d) đi qua điểm A(-1;-2) và tiếp xúc với (P)
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
cho đường thẳng y=mx+m-1
a) Tìm m để đường thẳng đã cho đi qua điểm
A(−3;2)
a) Chứng minh đường thẳng đã cho luôn đi qua một điểm cố định
b) Tìm m để đường thẳng đã cho tạo với hai trục tọa độ một tam giác có diện tích bằng 2.
Cho parabol: \(y=\dfrac{-x^2}{4}\) và đường thẳng y=mx+n. Xác định các hệ số m và n để đường thẳng đi qua điểm (1;2) và tiếp xúc với parabol. Tìm tọa độ tiếp điểm, vẽ đồ thị của parabol và đường thẳng trên cùng 1 hệ trục tọa độ
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
chứng tỏ đường thẳng -mx + 2y = m+3 luôn đi qua điểm cố định. Xác định tọa độ I
Lời giải:
Gọi $I(x_0,y_0)$ là điểm cố định mà đường thẳng đã cho luôn đi qua.
Điều đó có nghĩa là:
$-mx_0+2y_0=m+3$ với mọi $m$
$\Leftrightarrow m(-x_0-1)+(2y_0-3)=0$ với mọi $m$
\(\Rightarrow \left\{\begin{matrix} -x_0-1=0\\ 2y_0-3=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_0=-1\\ y_0=\frac{3}{2}\end{matrix}\right.\)
Vậy $I(-1; \frac{3}{2})$
a, trong mặt phẳng tọa độ oxy cho đường thẳng : y= mx +n ( d) đi qua điểm m -5 ; 3 ) và điểm n (-3;5) .tìm m,n ?
b, cho phương trình : x2 -4nx + 12n -9 = 0 ( 1) ( m là tham số ) . tìm các giá trị của n để phương trình (1) có hai nghiệm x1 , x2 thỏa mãn đẳng thức : x1(x2+ 3 ) + x2(x1+ 3) -54 =0
( giải giúp mình bt này với ạ)
Cho 2 đường thẳng (d1): mx -y=2 và (d2): (2-m)x+y=m
a) tìm giao điểm của d1 và d2 với m=2
b) chứng minh rằng đường thẳng d1 luôn đi qua một điểm cố định B và d2 luôn đi qua một điểm cố định C
c) tìm m để giao điểm A của 2 đường thẳng trên thỏa mãn điều kiện là góc BAC vuông
5. Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A ( x0; y0) cho trước. y = (2 - m )x + m,Thì đồ thị hàm số đi qua A(-1; 6) 6. Tìm điều kiện của m để:Cho( d) :y = (m − 2)x + n (m ≠ 2). a) Đường thẳng (d) cắt đường thẳng (d1): −2y + x − 5 = 0 b) Đường thẳng (d) song song với đường thẳng(d2): 3x + y = 1 c) Đường thẳng (d) trùng với đường thẳng (d3): y = 2x + 3 7. Cho hàm số y = ( m+2)x + n-1 ( m -2) có đồ thị là đừờng thẳng (d) Cho n= 6,Gọi giao điểm của (d) với hai trục toạ độ là A, B.Tìm m để tam giác ABC có diện tích bằng 6