Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0 (m là tham số)
Tìm k để phương trình có nghiệm x1; x2 thỏa mãn\(x_1^2+x_2^2=x_1x_2+28\)
Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0 (m là tham số)
a) Giải phương trình khi k = - 3
b) Tìm k để phương trình có nghiệm x1; x2 thỏa mãn \(x_1^2+x_2^2=x_1x_2+28\)
a: Thay k=-3 vào pt, ta được:
\(x^2-2\cdot\left(-3+2\right)x+\left(-3\right)^2+2\cdot\left(-3\right)-7=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
hay \(x\in\left\{\sqrt{5}-1;-\sqrt{5}-1\right\}\)
b: \(\text{Δ}=\left(2k+4\right)^2-4\left(k^2+2k-7\right)\)
\(=4k^2+16k+16-4k^2-8k+28\)
=8k+44
Để phương trình có hai nghiệm thì 8k+44>=0
=>8k>=-44
hay k>=-11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=28\)
\(\Leftrightarrow\left(2k+4\right)^2-3\cdot\left(k^2+2k-7\right)=28\)
\(\Leftrightarrow4k^2+16k+16-3k^2-6k+21=28\)
\(\Leftrightarrow k^2+10k+37-28=0\)
\(\Leftrightarrow\left(k+1\right)\left(k+9\right)=0\)
=>k=-1
Tìm k để phương trình : x2 – (2k +1)x+ k2 + 4 = 0 có hai nghiệm phân biệt x1 và x2 thỏa hệ thức: x1^2+ x2^2 = 63
\(\text{Δ}=\left(2k+1\right)^2-4\left(k^2+4\right)\)
\(=4k^2+4k+1-4k^2-16=4k-15\)
Để phương trình có hai nghiệm phân biệt thì 4k-15>0
=>k>15/4
\(x_1^2+x_2^2=63\)
=>(x1+x2)^2-2x1x2=63
=>(2k+1)^2-2(k^2+4)=63
=>4k^2+4k+1-2k^2-8=63
=>2k^2+4k-7-63=0
=>2k^2+4k-70=0
=>k^2+2k-35=0
=>(k+7)(k-5)=0
=>k=-7(loại) hoặc k=5(nhận)
Bài 1: Cho phương trình \(^{x^2-2\left(k-1\right)x+2k-5=0}\)
a) Giải phương trình với k = 1
b) Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn hệ thức \(\left|x_1\right|-\left|x_2\right|=\sqrt{14}\)
Bài 2: Cho phương trình \(x^2-5x+m=0\)(m là tham số)
a) Giải phương trình với m = 4
b) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\left|x_1-x_2\right|=3\)
Cho phương trình x2 - 2(k - 2)x - 2k - 5 = 0
Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn 2x1 - x2 = 7
PT có 2 nghiệm \(\Leftrightarrow\Delta'=\left(k-2\right)^2-\left(-2k-5\right)\ge0\)
\(\Leftrightarrow k^2-4k+4+2k+10\ge0\\ \Leftrightarrow k^2-2k+14\ge0\\ \Leftrightarrow k\in R\)
Vậy PT luôn có 2 nghiệm
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\left(1\right)\\x_1x_2=-2k-5\left(2\right)\end{matrix}\right.\)
Lại có \(2x_1-x_2=7\left(3\right)\)
\(\left(1\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\\2x_1-x_2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2k+3\\x_2=2x_1-7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2k+3}{2}\\x_2=\dfrac{4k+6}{2}-7=\dfrac{4k-8}{2}=2k-4\end{matrix}\right.\)
Thay vào \(\left(2\right)\Leftrightarrow\dfrac{\left(2k+3\right)\left(2k-4\right)}{2}=-2k-5\)
\(\Leftrightarrow\left(2k+3\right)\left(k-2\right)=-2k-5\\ \Leftrightarrow2k^2-k-6+2k+5=0\\ \Leftrightarrow2k^2+k-1=0\\ \Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-1\end{matrix}\right.\)
Cho phương trình x^2-(m+2)x+m+1=0(1)(x là ẩn, m là tham số Tìm m để phương trình (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn x1^2—2x2=7
cho phương trình ẩn x: x^2 -2x -m+2=0(m là tham số)
a Tìm m để phương trình đã cho có 2 nghiệm phân biệt.
b.Tìm m để 2 nghiệm x1, x2 thoả mãn : x1^2 -x2^2= 8
a) xét delta phẩy ta có:
1 + m - 2 = m -1 để phương trình có 2 nghiệm phân biệt thì delta phẩy >0
=> m-1>0 => m > 1
b) theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=2-m\end{matrix}\right.\)
theo bài ra ta có: x12 - x22 = 8
<=> (x1-x2).(x1+x2)= 8
<=> 2(x1-x2) = 8 <=> x1-x2 = 4
<=> (x1-x2)2 = 16 <=> x12 + x22 - 2x1x2 = 16
<=> (x1+x2)2 - 4x1x2 = 16 <=> 4 - 4.(2m - 1 ) = 16
<=> 4 - 8m + 4 = 16 <=> 8m = -8
=> m = -1
vậy m = -1 thỏa mãn x12 - x22 = 8
cho phương trình x2+Kx+2=0 (K là tham số )
tìm k có 2 nghiệm x1;x2 thỏa mãn
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì: $\Delta=k^2-8\geq 0$
$\Leftrightarrow k^2\geq 8(1)$
Áp dụng định lý Viet:
$x_1+x_2=-k$
$x_1x_2=2$
Khi đó:
$(\frac{x_1}{x_2})^2+(\frac{x_2}{x_1})^2> 23$
$\Leftrightarrow \frac{x_1^4+x_2^4}{(x_1x_2)^2}>23$
$\Leftrightarrow x_1^4+x_2^4> 23(x_1x_2)^2=23.2^2=92$
$\Leftrightarrow (x_1^2+x_2^2)^2-2(x_1x_2)^2> 92$
$\Leftrightarrow (x_1^2+x_2^2)^2-8> 92$
$\Leftrightarrow [(x_1+x_2)^2-2x_1x_2]^2>100$
$\Leftrightarrow (k^2-4)^2>100$
$\Leftrightarrow k^2-4>10$ hoặc $k^2-4<-10$
$\Leftrightarrow k^2>14$ hoặc $k^2<-6$ (loại)
$\Leftrightarrow k> \sqrt{14}$ hoặc $k< -\sqrt{14}$
Kết hợp với $k^2\geq 8$ suy ra $k> \sqrt{14}$ hoặc $k< -\sqrt{14}$
Cho phương trình x2 - (m + 3)x - m + 5 = 0 (m là tham số) (1)
Tìm m để phương trình (1) có nghiệm x1, x2 thoả mãn \(x_1^2x_2 + x_1x_2^2=7\)
\(x^2-\left(m+3\right)x-m+5=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+3\\x_1x_2=\dfrac{c}{a}=-m+5\end{matrix}\right.\)
Ta có :
\(x_1^2x_2+x_1x_2^2=7\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)-7=0\)
\(\Leftrightarrow\left(-m+5\right)\left(m+3\right)-7=0\)
\(\Leftrightarrow-m^2-3m+5m+15-7=0\)
\(\Leftrightarrow-m^2+2m+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
Cho phương trình (lần x) x²-2(m-2) x+m² =0 (1) (m là tham số) 1: tìm m để phương trình (1) có nghiệm 2: Trong trường hợp phương trình (1) có nghiệm. Gọi x1, x2 là hai nghiệm của phương trình (1) a: dùng định lí Vi-Ét hãy tính x1+x2 và x1.x2 theo m b: tìm m để x1.x2-(x1+x2)-2=0