Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ly nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 0:38

a: Khi m=-2 thì hệ sẽ là:

y+4=5 và -2x+3y=1

=>y=1 và -2x=1-3y=1-3=-2

=>x=1 và y=1

b: \(\left\{{}\begin{matrix}y=2m+5\\mx+3\left(2m+5\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2m+5\\mx=1-6m-15=-6m+14\end{matrix}\right.\)

=>x=-6m+14/m và y=2m+5

Để hệ có nghiệm (x,y)>0 thì -6m+14/m>0 và 2m+5>0

=>m>-5/2 và \(\dfrac{6m-14}{m}< 0\)

=>m>-5/2 và 0<m<7/3

=>0<m<7/3

Nguyễn Hoàng Duy
Xem chi tiết
tthnew
18 tháng 1 2021 lúc 13:17

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

Lê Thị Thanh Tân
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2021 lúc 10:01

Bài 1: 

a) Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Để P=2 thì \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)

\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=4\)

hay x=16(nhận)

Vậy: Để P=2 thì x=16

Hồng Phúc
3 tháng 1 2021 lúc 11:24

2.

a, \(m=3\), hệ phương trình trở thành:

\(\left\{{}\begin{matrix}x+3y=9\\3x-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=13\\y=\dfrac{3x-4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{23}{12}\end{matrix}\right.\)

b, \(\left(x;y\right)=\left(-1;3\right)\) là nghiệm của hệ, suy ra:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{10}{3}\\m=-13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại giá trị m thỏa mãn

Tutu
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2021 lúc 22:04

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

HT2k02
6 tháng 4 2021 lúc 22:28

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

Minh Hoàng Nguyễn
Xem chi tiết
Yeutoanhoc
27 tháng 2 2021 lúc 18:51

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 18:54

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1

Le Xuan Mai
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 13:20

Lời giải:
a. Với $m=2$ thì:

$2x-y=1$

$2x+y=9$

Cộng 2 phép tính với nhau thì:

$2x-y+2x+y=10$

$\Rightarrow 4x=10\Rightarrow x=2,5$

$y=2x-1=2.2,5-1=4$
Vậy hpt có nghiệm $(x;y)=(2,5; 4)$

b.

$2x-y=m-1$

$2x+y=4m+1$

$\Rightarrow (2x-y)+(2x+y)=m-1+4m+1$

$\Leftrightarrow 4x=5m$

$\Leftrightarrow x=\frac{5m}{4}$

$y=2x-(m-1)=\frac{5m}{2}-(m-1)=\frac{3m+2}{2}$

Khi đó:
$2x^2-3y=2$
$\Leftrightarrow \frac{25m^2}{8}-\frac{3(3m+2)}{2}=2$

$\Leftrightarrow 25m^2-36m-40=0$

$\Leftrightarrow m=\frac{18\pm 2\sqrt{331}}{25}$

9D-21-Bùi Quang Khải-ĐH
Xem chi tiết
hoa thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 19:50

1: Khi m=3 thì hệ phương trình (1) trở thành:

\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)

2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)

hay m=-2/3

Ko Có tên
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 12 2016 lúc 21:41

Mình giải bằng định thức Grane nhé : 

\(D=-6m-m=-7m\)

\(D_x=15-1=14\)

\(D_y=-2m-5m=-7m\)

Để hệ phương trình có nghiệm thì \(\orbr{\begin{cases}D\ne0\\D=D_x=D_y=0\end{cases}}\)

TH1. \(D\ne0\Rightarrow m\ne0\) , hệ phương trình có nghiệm \(\hept{\begin{cases}x=\frac{D_x}{D}=\frac{14}{-7m}=-2m\\y=\frac{D_y}{D}=\frac{-7m}{-7m}=1\end{cases}}\)

TH2. \(D=D_x=D_y=0\)

Ta nhận thấy ngay \(D_x=14\ne0\), do vậy trường hợp này không xảy ra.

Vậy để hệ phương trình có nghiệm thì \(m\ne0\)

phan tuấn anh
9 tháng 12 2016 lúc 22:44

lớp 9 đã hok định thức đâu Hoàng Lê Bảo Ngọc 

Nguyễn Thị Thùy Dương
10 tháng 12 2016 lúc 13:08

+\(m=0\)loại

+\(m\ne0\) dể  có nghiệm thì  \(\frac{-2m}{m}\ne\frac{1}{3}\) luôn đúng 

vậy \(m\ne0\)

Nữ Thánh Phá
Xem chi tiết