Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Linh Chi
Xem chi tiết
Nguyễn Minh Dương
14 tháng 8 2023 lúc 15:52

\(\left(9^{2018}-3^{4036}\right):6^{2006}\\ \Rightarrow\left[\left(3^2\right)^{2018}-3^{4036}\right]:6^{2006}\\ \Rightarrow\left(3^{4036}-3^{4036}\right):6^{2006}\\ \Rightarrow0:6^{2006}\\ \Rightarrow0\)

Nguyễn Ngọc Anh Minh
14 tháng 8 2023 lúc 15:53

\(=\dfrac{\left(3^2\right)^{2018}-3^{4036}}{6^{2006}}=\dfrac{3^{4036}-3^{4036}}{6^{2006}}=0\)

Đào Trí Bình
14 tháng 8 2023 lúc 15:57

0

Postgass D Ace
Xem chi tiết
Postgass D Ace
Xem chi tiết
Hồ Ngọc Minh Châu
1 tháng 3 2020 lúc 10:13

-(-219)+(-219)-401+12

Khách vãng lai đã xóa
Ngô Cao Hoàng
30 tháng 4 2020 lúc 18:01

https://olm.vn/hoi-dap/detail/108515110153.html

Khách vãng lai đã xóa
TAIKHOANDUNGDEHOI
Xem chi tiết
phạm hồng hạnh
18 tháng 1 2022 lúc 21:19

heo dõi mk dc k

Đàm Tùng Vận
Xem chi tiết
Akai Haruma
8 tháng 12 2021 lúc 0:49

Lời giải:
Đặt \(\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p\). Khi đó:

ĐKĐB $\Leftrightarrow \frac{a^2m^2+b^2n^2+c^2p^2}{a^2+b^2+c^2}=m^2+n^2+p^2$

$\Rightarrow a^2m^2+b^2n^2+c^2p^2=(a^2+b^2+c^2)(m^2+n^2+p^2)$

$\Leftrightarrow a^2n^2+a^2p^2+b^2m^2+b^2p^2+c^2m^2+c^2n^2=0$
$\Rightarrow an=ap=bm=bp=cm=cn=0$

Vì $a,b,c\neq 0$ nên $m=n=p=0$

$\Rightarrow x=y=z=0$

Khi đó:

$\frac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0$

$\frac{x^{2019}}{a^{2019}}=\frac{y^{2019}}{b^{2019}}=\frac{z^{2019}}{c^{2019}}=0$

$\Rightarrow$ đpcm

 

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 20:18

ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)

\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)

\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)

Vì (1) luôn không âm mà a,b,c≠0

nên x=y=z=0

\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)

mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)

nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)

Phạm Thị Hằng
Xem chi tiết
Sengoku
9 tháng 9 2019 lúc 21:14

ta có \(\frac{1}{a}\)+\(\frac{1}{c}\)=\(\frac{1}{a+b+c}\)-\(\frac{1}{b}\)

\(\frac{a+c}{ac}\)=\(\frac{-\left(a+c\right)}{b\left(a+b+c\right)}\)

\(\left[{}\begin{matrix}a+c=0\\ac=-b\left(a+b+c\right)\end{matrix}\right.\)

\(\left[{}\begin{matrix}a=-c\\\left(b+a\right)\left(b+c\right)=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}a=-c\\c=-b\\b=-a\end{matrix}\right.\)

(*) với a=-c ⇒điều cần CM :\(\frac{1}{a^{2019}}\)+\(\frac{1}{b^{2019}}\)+\(\frac{1}{c^{2019}}\)=\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

\(\frac{1}{-c^{2019}}\)+\(\frac{1}{b^{2019}}\)+\(\frac{1}{c^{2019}}\)=\(\frac{1}{-c^{2019}+b^{2019}+c^{2019}}\)

\(\frac{1}{b^{2019}}\)=\(\frac{1}{b^{2019}}\) đúng vậy ta có điều cần CM

tương tự với 2 TH còn lại nhé

lê phương thảo
Xem chi tiết
Nguyễn Hoàng Anh Quân
Xem chi tiết
Nguyễn Hoàng Anh Quân
27 tháng 6 2019 lúc 10:36

Ta tính hiệu của M và T

ta có 

Hiệu của Mẫu và Tử của A là   2019^2019-1 - (2019^2018-1) = 2019^2019 - 2019^2018 = 2019^2019.2018

Hiệu của Mẫu và Tử của B là   2019^2019+1 - (2019^2018+1) = 2019^2019 - 2019^2018 = 2019^2019.2018

2 Hiệu trên bằng nhau nên A < B  

dream XD
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2021 lúc 20:08

Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)

\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)

\(\Leftrightarrow A>B\)