Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thịnh Bùi Đức Phú Thịnh
Xem chi tiết
Cỏ dại
Xem chi tiết
Tiểu Thang Viên (bánh tr...
Xem chi tiết
bach nhac lam
20 tháng 5 2021 lúc 11:11

Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)

Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm

Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm

Quách Phương
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2021 lúc 20:12

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

Lê Đức Hoàng Sơn
Xem chi tiết
Lầy Văn Lội
2 tháng 5 2017 lúc 21:12

nhận thấy x=0 không là nghiệm của phương trình ,chia cả 2 vế của phương trình cho xta được:

\(x^2+ax+b+\frac{a}{x}+\frac{1}{x^2}=0\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+a\left(x+\frac{1}{x}\right)+b=0\)

đặt \(m=x+\frac{1}{x}\),phương trình trở thành \(m^2-2+am+b=0\Leftrightarrow m^2-2=-am-b\Leftrightarrow\left(m^2-2\right)^2=\left(am+b\right)^2\)

Áp dụng bất đẳng thức bunyakovsky :\(\left(m^2-2\right)^2=\left(am+b\right)^2\le\left(m^2+1\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(m^2-2\right)^2}{m^2+1}=\frac{m^4-4m^2+4}{m^2+1}=m^2-5+\frac{9}{m^2+1}\)

\(=m^2+1+\frac{25}{m^2+1}-\frac{16}{m^2+1}-6\)

Áp dụng bất đẳng thức AM-GM: \(m^2+1+\frac{25}{m^2+1}\ge10\)

\(a^2+b^2\ge4-\frac{16}{m^2+1}\)

lại có \(m^2=\left(x+\frac{1}{x}\right)^2\ge4\)(AM-GM)

nên \(a^2+b^2\ge4-\frac{16}{5}=\frac{4}{5}\) 

đẳng thức xảy ra khi \(\hept{\begin{cases}a=-\frac{4}{5}\\b=-\frac{2}{5}\end{cases}}\)

hoàng thị huyền trang
Xem chi tiết
Bang Bang 2
1 tháng 8 2018 lúc 10:03

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

AI CHƠI BANG BANG 2 THÌ TÍCH MÌNH

Sách Giáo Khoa
Xem chi tiết
Trần Quang Đài
26 tháng 5 2017 lúc 20:59

Công thức nghiệm của phương trình bậc hai

Kaioken
Xem chi tiết
Pain Thiên Đạo
27 tháng 5 2018 lúc 20:14

tích đi rồi ta làm

Ơ Ơ BUỒN CƯỜI
27 tháng 5 2018 lúc 20:23

Nếu \(x_o\)là nghiệm của phương trình đã cho thì \(x_o\ne0\)

\(x_o^4+ax_o^3+bx_o^2+ax_o+1=0\)

Chia 2 vế cho \(x_o^2\), ta được : 

\(\left(x_o^2+\frac{1}{x_o^2}\right)+a\left(x_o+\frac{1}{x_o}\right)+b=0\)(I) 

Đặt \(t=x_o+\frac{1}{x_o}\)\(\left|t\right|=\left|x_o+\frac{1}{x_o}\right|=\left|x_o\right|+\left|\frac{1}{x_o}\right|\ge2\)

Từ (I) , => \(t^2+at+b-2=0\Rightarrow t^2=-at-b+2\)

Áp dụng BĐT B.C.S ta được : 

\(t^4=\left[at+\left(b-2\right)\right]^2\le\left[a^2+\left(b-2\right)^2\right]\left(t^2+1\right)\)

\(\Rightarrow a^2+\left(b-2\right)^2\ge\frac{t^4}{t^2+1}\)

Mà \(\frac{t^4}{t^2+1}\ge\frac{t^4}{t^2+\frac{t^2}{4}}=\frac{4t^4}{5t^2}=\frac{4}{5}t^2\ge\frac{16}{5}\left(\text{vì}:t^2\ge4\right)\)

Vậy ...... 

Kaioken
27 tháng 5 2018 lúc 20:26

@Pain Thiên Đạo : t đỵt cần m` lm nx  

⭐Hannie⭐
Xem chi tiết
Bacon Family
17 tháng 3 2023 lúc 20:27

`a) 7x^2 - 2x + 3 = 0`

`(a = 7; b = -2; c = 3)`

`Δ = b^2 - 4ac = (-2)^2 - 4.7.3 = -80 < 0`

`=>` phương trình vô nghiệm

`b) 6x^2 + x + 5 = 0`

`(a = 6;b = 1;c = 5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.5 = -119 < 0`

`=>` phương trình vô nghiệm

`c) 6x^2 + x - 5 = 0`

`(a = 6;b=1;c=-5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.(-5) = 121 > 0`

`=>` phương trình có 2 nghiệm phân biệt

`x_1 = (-b + sqrt{Δ})/(2a) = (-1+ sqrt{121})/(2.6) = (-1+11)/12 = 10/12 = 5/6`

`x_2 = (-b - sqrt{Δ})/(2a) = (-1- sqrt{121})/(2.6) = (-1-11)/12 = -12/12 = -1`

Vậy phương trình có 1 nghiệm `x_1 = 5/6; x_2 = -1`

 

Minh Hiếu
17 tháng 3 2023 lúc 20:17

ủa, mấy bài đó tương tự như ct mà:

\(7x^2-2x+3=0\) \(\left\{{}\begin{matrix}a=7\\b=-2\\c=3\end{matrix}\right.\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.7.3=-80\)

Vì \(\Delta< 0\) \(\Rightarrow\) pt vô nghiệm

Ngô Hải Nam
17 tháng 3 2023 lúc 20:19

a)

`7x^2 -2x+3=0`

có \(\Delta=b^2-4ac=\left(-2\right)^2-4\cdot7\cdot3=-80< 0\)

=> phương trình vô nghiệm

b)

`6x^2 +x+5=0`

có \(\Delta=b^2-4ac=1^2-4\cdot6\cdot5=-119< 0\)

=> phương trình vô nghiệm

c)

`6x^2 +x-5=0`

có \(\Delta=b^2-4ac=1^2-4\cdot6\cdot\left(-5\right)=121>0\)

\(=>x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+\sqrt{121}}{2\cdot6}=\dfrac{5}{6}\)

\(=>x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-\sqrt{121}}{2\cdot6}=-1\)