Rút gọn:
a) \(\frac{x^2-2x-8}{x^2+x-12}\)
b) \(\frac{x^4-5x^2+4}{x^4-x^2+4x-4}\)
rút gọn các phân thức sau:
a) \(A=\frac{x^2-9}{x^2-6x+9}\)
b) \(B=\frac{9x^2-16}{3x^2-4x}\)
c) \(C=\frac{x^2+4x+4}{2x+4}\)
d) \(D=\frac{2x-x^2}{x^2-4}\)
e)\(E=\frac{3x^2+6x+12}{x^3-8}\)
giải hộ e vs ạ
Trả lời:
a, \(A=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
b, \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)
c, \(C=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2\left(x+2\right)}=\frac{x+2}{2}\)
d, \(D=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x}{x+2}\)
e, \(E=\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
rút gọn
a) \(\frac{1}{x-y}-\frac{3xy}{x^2-y^2}+\frac{x-y}{x^2+x+y^2}\)
b) \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+4}+\frac{1}{x^2+5x+6}\)
c) \(\frac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\frac{x^2-25}{9x^2.\left(2x+5\right)^2}-\frac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
Cho biểu thức: \(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)với \(x\ne0,x\ne-1,x\ne-2,x\ne2\)
a, Rút gọn A
b, Tính A khi \(x\)thỏa mãn \(^{x^2-2x=8}\)
cái này nó hơi khó 1 tí nên chú ý chút khác lên lever :>
a, \(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)ĐK : x khác 0 ; 2 ; -2
\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4x\left(x-2\right)}{MTC}+\frac{2x\left(x+2\right)}{MTC}+\frac{\left(6-5x\right)x}{MTC}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4x^2-8x+2x^2+4x+6x-5x^2}{MTC}\right):\frac{x+1}{x-2}\)
\(=\frac{x^2+2x}{x\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x+1}=\frac{1}{x+1}\)
b, Ta có : \(x^2-2x=8\Leftrightarrow x^2-2x-8=0\)
\(\left(x-4\right)\left(x+2\right)=0\)<=> \(x=4;-2\)
TH1 : Thay x = 4 ta được : \(\frac{1}{4+1}=\frac{1}{5}\)
TH2 : Thay x = -2 ta được : ( ktmđkxđ )
\(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right)\div\frac{x+1}{x-2}\)
a)\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\right)\times\frac{x-2}{x+1}\)
\(=\left(\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)
\(=\left(\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}\times\frac{x-2}{x+1}\)
\(=\frac{1}{x+1}\)
b) x2 - 2x = 8
<=> x2 - 2x - 8 = 0
<=> x2 - 4x + 2x - 8 = 0
<=> x( x - 4 ) + 2( x - 4 ) = 0
<=> ( x - 4 )( x + 2 ) = 0
<=> x = 4 ( tm ) hoặc x = -2 ( ktm )
Với x = 4 ( tm ) => A = 1/5
Với x = -2 ( ktm ) => A không xác định
a,\(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right)\div\frac{x+1}{x-2}\)
\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right)\div\frac{x+1}{x-2}\)
\(=\left(\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(6-5x\right)}{x\left(x-2\right)\left(x+2\right)}\right)\div\frac{x+1}{x-2}\)
\(=\frac{4x^2-8x+2x^2+4x+6x-5x^2}{x\left(x-2\right)\left(x+2\right)}\div\frac{x+1}{x-2}\)
\(=\frac{x^2+2x}{x\left(x-2\right)\left(x+2\right)}\div\frac{x+1}{x-2}\)
\(=\frac{x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\div\frac{x+1}{x-2}\)
\(=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{x-2}{\left(x+1\right)\left(x-2\right)}=\frac{1}{x+1}\)
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
rút gọn biểu thức A =\(\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\)
bài 2 : thực hiện phép tính
a. \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
b. \(\frac{12x}{5y^3}.\frac{15y^4}{8x^3}\)
c.\(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)
d.\(\frac{x^{2-4}}{3x+12}.\frac{x+4}{2x-4}\)
e.\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
f.\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
g.\(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6}\)
h.\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
i.\(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}\)
j.\(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}\)
k.\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
ĐKXĐ bạn tự tìm nha : )
k, Ta có : \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}\)
\(=\frac{3x\left(1-2x\right)\left(1+2x\right)}{2x\left(x+4\right)\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}\)
j, Ta có : \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{x+y}{y-x}:\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}=\frac{x+y}{y-x}.\frac{3\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)
\(=\frac{3\left(x-y\right)\left(x+y\right)}{x\left(y-x\right)}=\frac{3\left(x-y\right)\left(x+y\right)}{-x\left(x-y\right)}=\frac{-3\left(x+y\right)}{x}\)
i, Ta có : \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right)}{-\left(a-b\right)}:\frac{a+b}{2\left(a^2-b^2\right)}=\frac{a\left(a+b\right)}{-\left(a-b\right)}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)
\(=\frac{2a\left(a+b\right)\left(a-b\right)}{-\left(a-b\right)}=-2a\left(a+b\right)\)
h, = k,
f, Ta có : \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(x-6\right)}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
a. \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right).2\left(2-x\right)}{4\left(x-2\right)\left(x+2\right)}=\frac{-5}{2}\)
b. \(\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{12x.15y^4}{5y^3.8x^3}=\frac{3.3y}{2x^2}=\frac{9y}{2x^2}\)
c. \(\frac{4y^2}{11x^4}.\left(\frac{-3x^2}{8y}\right)=\frac{4y^2.\left(-3x^2\right)}{11x^4.8y}=\frac{-3y}{22x^2}\)
d. \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}=\frac{\left(x-2\right)\left(x+2\right)\left(x+4\right)}{3\left(x+4\right).2\left(x-2\right)}=\frac{x+2}{6}\)
f. \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x+6\right)\left(x-6\right).3}{\left(2x+10\right)\left(6-x\right)}=\frac{-3x-18}{2x+10}\)
g. \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6}=\frac{\left(x^2-9y^2\right).3xy}{x^2y^2.\left(2x-6\right)}=\frac{3x^2-27y^2}{2x^2y-6xy}\)
h. \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right).3x}{x\left(x+4\right).2\left(1-2x\right)}=\frac{3+6x}{2x+8}\)
i. \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right).2\left(a-b\right)\left(a+b\right)}{\left(b-a\right)\left(a+b\right)}=-2a^2-2ab\)
j. \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{\left(x+y\right).3\left(x-y\right)\left(x+y\right)}{\left(y-x\right).x\left(x+y\right)}=\frac{-3x-3y}{x}\)
\(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)
\(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)
\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
4x^2/5y^2 * 5y/6x * 3y/2x= 1/3
(x-2)(x+2)/3(x+4) * x+4/2(x-2)=x+2/6
5(x+2)/4(x-2)* -2(x-2)/x+2=-5/2
Cho phân thức : \(A=\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\)
rút gọn phân thức A làm ơn giải chi tiết giúp mình
\(A=\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\\=\left(\frac{4x}{x^2-4}+\frac{\left(2x-4\right)\left(x-2\right)}{x^2-4}\right)\frac{x+2}{2x}+\frac{2}{2-x}=\left(\frac{4x}{x^2-4}+\frac{2x^2-4x-4x+8}{x^2-4}\right) \frac{x+2}{2x}+\frac{2}{2-x}\)
\(=\left(\frac{4x+2x^2-8x+8}{x^2-4}\right).\frac{x+2}{2x}+\frac{2}{2-x}\\ =\frac{2x\left(x+2\right)-8\left(x-1\right)}{x^2-4}.\frac{x+2}{2x}+\frac{2}{2-x}\)
Cho biểu thức:
a, P=\(\left(\frac{x+1}{2x+2}+\frac{x-2}{2x+4}+\frac{-8}{x-2}\right):\frac{4}{x-2}\)
b, P=\(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
- Tìm điều kiện của x để P xác định?
- Rút gọn P
Làm hộ mình với ạ!!!