b) \(\frac{x^4-5x^2+4}{x^4-x^2+4x-4}\)
\(=\frac{x^4-x^2-4x^2+4}{x^2\left(x^2-1\right)+4\left(x-1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x-1\right)\left(x^3+x^2+4\right)}\)
\(=\frac{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x^3+x^2+4\right)}\)
\(=\frac{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x^2-x+2\right)}\)
\(=\frac{x^2-x-2}{x^2-x+2}\)