Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yeens
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2021 lúc 22:00

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

hoàng thị huyền trang
Xem chi tiết
Nguyen Minh
Xem chi tiết
Vuy năm bờ xuy
3 tháng 6 2021 lúc 2:05

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Đặng Khánh
3 tháng 6 2021 lúc 8:49

(x,y) hoán vị của (4,9) . có vẻ hoạt động

hung
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 10:14

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 10:26

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

Hày Cưi
Xem chi tiết
Vũ Đức Mạnh
Xem chi tiết
tth_new
30 tháng 12 2018 lúc 8:36

Dùng thẳng cô si vào VT luôn cho nhanh :v!

ĐK: \(x,y,z>0\)

Ta có: \(VP=\frac{1}{2}\left(y+3\right)=\frac{y+3}{2}\)

Mặt khác theo cô si,ta có

\(VT\le\frac{1+x}{2}+\frac{1+y-z}{2}+\frac{1+z-x}{2}\)\(=\frac{y+3}{2}=VP\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\y-z=1\\z-x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y-z=1\\z-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\z=2\\y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=2\end{cases}}\)

Vậy ...

Quá nhanh quá ngu hiểm :v.Lâu lắm mới nghĩ ra được cách thế này.Nãy ngồi bình phương suốt mà làm hoài không ra.

Minh Hiếu
Xem chi tiết
Đỗ Thanh Hải
4 tháng 1 2022 lúc 20:12

Tham khảo nha e

undefinedundefined

❤X༙L༙R༙8❤
4 tháng 1 2022 lúc 20:15

đăng câu hỏi kiểu j mà đặng đc lên như thế này đấy

 

Nguyễn Hoàng Minh
4 tháng 1 2022 lúc 20:24

1.

Đặt \(\sqrt[3]{2+\sqrt{b}}=x;\sqrt[3]{2-\sqrt{b}}=y\)

Do \(x>0\Rightarrow x^2+y^2-xy=\dfrac{3}{4}x^2+\left(\dfrac{1}{2}x-y\right)^2>0\)

\(PT\Leftrightarrow\dfrac{x^3+y^3}{a}+xy=x^2+y^2\Leftrightarrow\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{a}=x^2-xy+y^2\\ \Leftrightarrow\left(x^2-xy+y^2\right)\left(\dfrac{x+y}{a}-1\right)=0\\ \Leftrightarrow\dfrac{x+y}{a}=1\\ \Leftrightarrow\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}=a\left(1\right)\\ \Leftrightarrow\left(\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}\right)^3=a^3\\ \Leftrightarrow4+3a\sqrt[3]{4-b}=a^3\left(2\right)\\ \Rightarrow4-b=\left(\dfrac{a^3-4}{3a}\right)^3\)

Mặt khác \(b\in \mathbb{Z^+}\)

\(\Rightarrow\left(a^3-4\right)⋮3a\Rightarrow\left(a^3-4\right)⋮a\\ \Rightarrow4⋮a\Rightarrow a\in\left\{1;2;4\right\}\)

Với \(a=1\Rightarrow4-b=1\Rightarrow b=5\)

Với \(a=2;a=4\Rightarrow b\notin \mathbb{Z}\)

Vậy \(\left(a;b\right)=\left(1;5\right)\)

Nguyễn Phúc Thiên
Xem chi tiết