Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Giang Bùi
Xem chi tiết
Kudo Shinichi
25 tháng 12 2014 lúc 22:12
1\20 + 1\40 = 60\20.40 > 60\30^2 (do 30^2 > 30^2-10^2)
tương tự ta có:
1\21 + 1\39 > 60\30^2
1\22 + 1\38 > 60\30^2
........
1\29 + 1\31 > 60\30^2
=> S > 10.60\30^2 + 1\30 -1\20
=> S > 20\30 + 1\30 -1\20 > 7\12

lại có:
1\21+..+1\25 < 5\21
1\26+..+1\30 < 5\26
....
1\36+..+1\40 < 5\36
=> S < 5\21 + 5\26 + 5\31 + 5\36
=> S < 5.(1\21 + 1\24 + 1\30 + 1\36)
=> S < 5\3.(1\7 + 1\8 + 1\10 + 1\12)
do 1\7 + 1\10 +1\12 < 3\8
=> S < 5\3.(4\8) = 5\6
(cm S > 7\12 gần như adụng cosi ở phổ thông... 1\a + 1\(n-a) >= 2\(a.(n-a)
.......... .
bạn trang L mắc sai lầm nghiêm trọng....
1\21 +..+1\40 < 1\21 +..+1\21 = 20\21 chứ không phải lớn hơn...
bời vì 1\(21+a) < 1\21 với mọi a>0
tương tự S >1\2 chứ không phải < 1\2
để ktra lại rất đơn giản... theo bạn Trang L ta có:
7\12 < 20\21 < S < 1\2 < 5\6
điều này hoàn toàn vô lý với nền toán học thế giới hiện nay
nói cách khác.. theo Trang L ta có:
.. S > 20\21 mà 20\21 > 5\6 => S >5\6 vậy kết luận S < 5\6 kiểu gì đây....?
........ .....
(nhìn bạn Trang L giải tôi cũng tý bị nhầm... nhưng chú ý hơn mới thấy đc bạn ấy bị nhầm BDT, a> b => 1\a < 1\b chư không phải 1\a>1\b)
Nguyễn Thùy Linh
Xem chi tiết
Duc Loi
7 tháng 4 2019 lúc 10:18

Sai đề rồi.

Đề phải là: \(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

Giải như sau: 

\(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\left(đpcm\right).\)

Đỗ Cao Minh Thiên
Xem chi tiết
pham minh quang
Xem chi tiết
Đỗ Phân Tuấn Phát
22 tháng 3 2017 lúc 19:26

Hello Cúp Bơ Quang, ta là Phát đây. Mi bí bài đó hả, ta cũng chẳng biết.

Hello
Xem chi tiết
Sáng
14 tháng 12 2017 lúc 16:05

Đặt \(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)

Ta thấy:

\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

\(\Rightarrow B< \dfrac{1}{4}\)

Ta lại thấy:

\(B>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\)

\(\Rightarrow B>6\)

\(\Rightarrow\dfrac{1}{6}< B< \dfrac{1}{4}\left(dpcm\right)\)

Dương Hồng Bảo Phúc
Xem chi tiết
Nguyễn Thị Thương Hoài
13 tháng 11 2023 lúc 14:53

1.A = 21 + 22 + 23 + 24 + ... + 259 + 260

Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.

vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:

A = (21 + 22) + (23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)

A =2.3 + 23.3  + ... + 259.3

A =3.( 2 + 23+...+ 259)

Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)

 

 

 

sdjo
13 tháng 11 2023 lúc 14:01

áp dụng công thức là ra :))))

Nguyễn Thị Thương Hoài
13 tháng 11 2023 lúc 14:26

2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6

   M = 3n+1.(32 + 1) + 2n+2.(2 + 1) 

    M = 3n.3.(9 + 1) + 2n+1.2 . 3

    M = 3n.30 + 2n+1.6

   M = 6.(3n.5 + 2n+1)

   Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)

Trần Trí Kiên
Xem chi tiết
vũ ngọc bảo phúc
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 2 2019 lúc 19:16

Ta cần chứng minh:\(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với \(n=1\Rightarrow1=1\)(đúng)

Giả sử bài toán đúng với \(n=k\left(n\inℕ^∗\right)\) thì ta có:

 \(1+2^3+3^3+...+k^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với \(n=k+1\) tức là:

\(1^3+2^3+3^3+....+n^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(A_{k+1}=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\) [theo (1)]

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

\(\Rightarrow\left(2\right)\) đúng

\(\Rightarrow\left(1\right)\) đúng.

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{n^2\cdot\left(n+1\right)^2}{4}\)

\(\Rightarrow1^3+2^3+...+n^3=\frac{n^2\cdot\left(n+1\right)^2}{4}\left(đpcm\right)\)

Phùng Anh Đức 6a5
Xem chi tiết
👁💧👄💧👁
Xem chi tiết