Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Na
Xem chi tiết
Na
1 tháng 11 2018 lúc 19:05
Nguyễn Lê Phước Thịnh
16 tháng 11 2022 lúc 13:39

a: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)

b: Vì x+căn x+1>0

nên A>0

Na
Xem chi tiết
Quangquang
14 tháng 12 2020 lúc 19:27

https://i.imgur.com/Qx0XV1d.jpg

 

Na
Xem chi tiết
Đặng Thị Phước Quyên
1 tháng 11 2018 lúc 19:35
https://i.imgur.com/Qx0XV1d.jpg
Đặng Thị Phước Quyên
1 tháng 11 2018 lúc 19:36
https://i.imgur.com/I391EQM.jpg
Duc Nguyendinh
2 tháng 11 2018 lúc 20:55

Căn bậc hai. Căn bậc ba

Na
Xem chi tiết
Mysterious Person
3 tháng 11 2018 lúc 19:54

a) điều kiện xác định : \(x\ge0;x\ne1\)

ta có : \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(\Leftrightarrow A=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\)

\(\Leftrightarrow A=\left(\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{2}\) \(\Leftrightarrow A=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\dfrac{2}{\sqrt{x}-1}\) \(\Leftrightarrow A=\dfrac{2}{x+\sqrt{x}+1}\)

a) ta có : \(A=\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}>0\forall x\)

c) ta có : \(A=\dfrac{2}{x+\sqrt{x}+1}\le\dfrac{2}{1}=2\) (vì \(x\ge0\) )

\(\Rightarrow\) \(A_{max}=2\) khi \(x=0\)

Na
3 tháng 11 2018 lúc 12:25
tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:30

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

b: Thay x=16 vào A, ta được:

\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)

ILoveMath
30 tháng 8 2021 lúc 14:42

c)\(A=\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\)

\(\Rightarrow\sqrt{x}+3=9\\ \Rightarrow\sqrt{x}=6\\ \Rightarrow x=36\)

d) \(A=\dfrac{3}{\sqrt{x}+3}\)

Vì \(3>0;\sqrt{x}+3>0\Rightarrow\dfrac{3}{\sqrt{x}+3}>0\)

e) \(2A\in Z\Rightarrow\dfrac{6}{\sqrt{x}+3}\in Z \Rightarrow6⋮x+3\\\Rightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\Rightarrow x=\left\{0;9\right\}\)

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 20:55

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)

mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1

Kết hợp ĐKXĐ,ta được: x>1

Vậy: Để P>0 thì x>1

ひまわり(In my personal...
3 tháng 2 2021 lúc 21:03

undefined

Tenten
Xem chi tiết
Hung nguyen
22 tháng 8 2017 lúc 21:39

d/ Ta có:

\(A=\left(-x+\sqrt{x}-\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=\dfrac{1}{4}-\left(\sqrt{x}-\dfrac{1}{2}\right)^2\le\dfrac{1}{4}\)

Vậy GTLN là \(A=\dfrac{1}{4}\) đạt được tại \(x=\dfrac{1}{4}\)

Hung nguyen
22 tháng 8 2017 lúc 21:34

b/ \(\sqrt{1x}-x\)

c/ Ta có:

x < 1

\(\Rightarrow\sqrt{x}< 1\)

\(\Rightarrow1-\sqrt{x}>0\)

Ta lại có: x > 0

\(\Rightarrow A=\sqrt{x}-x=\sqrt{x}\left(1-\sqrt{x}\right)>0\)

Nguyễn Minh Ngọc
Xem chi tiết
Lê Anh Khoa
30 tháng 5 2022 lúc 13:10

hình như đề là tìm x thỏa mãn: \(\dfrac{1}{Q}+P\ge4\) thì phải 

nếu vậy thì ta có \(\dfrac{1}{Q}+P\) = \(\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}\)

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)

≥ 2+2 = 4(bđt Cauchy)

 vậy \(\dfrac{1}{Q}+P\ge4\)

Na
Xem chi tiết
Thiên thần chính nghĩa
24 tháng 10 2018 lúc 22:12

a) ĐKXĐ: x ≥ 0; x ≠ 1

A = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)

= \(\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)

=\(\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

= \(2\sqrt{x}.\dfrac{\sqrt{x}-1}{2}\)

= \(\sqrt{x}\left(\sqrt{x}-1\right)\)

b) Để A > 0 ⇔ \(\sqrt{x}\left(\sqrt{x}-1\right)\)> 0

\(\begin{cases} x > 0\\ \sqrt{x}-1>0 \end{cases}\) (vì \(\sqrt{x}\) ≥ 0)

\(x>1\)

Vậy A > 0 ⇔ x > 1

c) Có A = \(\sqrt{x}\left(\sqrt{x}-1\right)\) = \(x-\sqrt{x}\)

= \(x-2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}\)

= \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

Thấy \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\) ∀ x ≥ 0 Hay A ≥ \(-\dfrac{1}{4}\) ∀ x ≥ 0 và x ≠ 1

Dấu '' = '' xảy ra ⇔ \(\sqrt{x}-\dfrac{1}{2}=0\)\(x=\dfrac{1}{4}\) (thỏa mãn điều kiện)

GTNN của A là \(-\dfrac{1}{4}\) tại \(x=\dfrac{1}{4}\)

(Mình xin thay đổi đề bài phần c một chút nhé! Mình nghĩ với x càng lớn thì A sẽ càng lớn nên A không có giá trị lớn nhất)

Học toán vui vẻ! banhqua