a) -2 x =14
b) x-2x=16
c)x+2x =15
Tìm x:
a) x(1-2x)+2x^2=14
b) x(x-5)+3x-15=0
giúp e với ạ
a: \(x\left(1-2x\right)+2x^2=14\)
=>\(x-2x^2+2x^2=14\)
=>x=14
b: \(x\left(x-5\right)+3x-15=0\)
=>\(\left(x-5\right)\left(x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Bài 1: phân tích đa thứ thành nhân tử
a) ( x - 12 )(x + 7 ) - 2x + 14
b) x2 - 6x + 8
c) 9x2 + 9xy - ( x + y )
d) ( x2 - 2xy + y2 ) - 81
e) ( x + 4 )2 - 15 ( 4 - x)
a) \(=x^2+7x-12x-84-2x+14\)
\(=x^2-7x-70\)
b)\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
c) \(=9x\left(x+y\right)-\left(x+y\right)\)
\(=\left(9x-1\right)\left(x+y\right)\)
d)\(=\left(x-y\right)^2-9^2\)
\(=\left(x-y+9\right)\left(x-y-9\right)\)
e)\(=x^2+8x+16-60+15x\)
\(=x^2+23x-44\)
a) Ta có: \(\left(x-12\right)\left(x+7\right)-2x-14\)
\(=\left(x-12\right)\left(x+7\right)-2\left(x+7\right)\)
\(=\left(x+7\right)\left(x-14\right)\)
b) Ta có: \(x^2-6x+8\)
\(=x^2-2x-4x+8\)
\(=\left(x-2\right)\left(x-4\right)\)
c) Ta có: \(9x^2+9xy-\left(x+y\right)\)
\(=9x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(9x-1\right)\)
d) Ta có: \(\left(x^2-2xy+y^2\right)-81\)
\(=\left(x-y\right)^2-81\)
\(=\left(x-y-9\right)\left(x-y+9\right)\)
Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
tìm x, biết:
a) (2x-1) mũ 20= (2x-1)mũ 18
b) ( 2x-3) mũ 2= 9
c) (x-5) mũ 2 = (1-3x)mũ 2
bài 2: Chứng minh rằng:
a) 15 mũ 20 - 15 mũ 19 chia hết cho 14
b) 3 mũ 20 + 3 mũ 21+ 3 mũ 22 chia hết cho 13
c) 3+ 3 mũ 2 + 3 mũ 3+.......+ 3 mũ 2007 chia hết cho 13
7 mũ 1+ 7 mũ 2+ 7 mũ 3+.........+ 7 mũ 4n chia hết cho 400
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
a, x : 2 = y : ( - 5 ) và x - y = 14
b, x/2 = y/5 = z/6 và x - y + z = 24
c, 2x = 3y = 6z và x + y - z = 8
d, x/3 = y/2 = z /-3 và 2x - 3y + 4z = 48
e, x/5 = y/6 = z/7 và x - y = 36
f, x/12 = y/13 = z/15 và 3x + 2y = 52
giúp e vs ạ, e cần gấp..hicc
e cảm ơn ạ
a) x : 2 = y : (-5)
⇒ x/2 = y/(-5)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 =
x/2 = 2 ⇒ x = 2.2 = 4
y/(-5) = 2 ⇒ y = 2.(-5) = -10
Vậy x = 4; y = -10
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8
x/2 = 8 ⇒ x = 8.2 = 16
y/5 = 9 ⇒ y = 8.5 = 40
z/6 = 8 ⇒ z = 8.6 = 48
Vậy x = 16; y = 40; z = 48
c) 2x = 3y = 6z
⇒ x/(1/2) = y/(1/3) = z/(1/6)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12
2x = 12 ⇒ x = 12 : 2 = 6
3y = 12 ⇒ y = 12 : 3 = 4
6z = 12 ⇒ z = 12 : 6 = 2
Vậy x = 6; y = 4; z = 2
d) x/3 = y/2 = z/(-3)
⇒ 2x/6 = 3y/6 = 4z/(-12)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4
x/3 = -4 ⇒ x = -4.3 = -12
y/2 = -4 ⇒ y = -4.2 = -8
z/(-3) = -4 ⇒ z = -4.(-3) = 12
Vậy x = -12; y = -8; z = 12
e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36
x/5 = -36 ⇒ x = -36.5 = -180
y/6 = -36 ⇒ y = -36.6 = -216
z/7 = -36 ⇒ z = -36.7 = -252
Vậy x = -180; y = -216; z = -252
f) x/12 = y/13
⇒ 3x/36 = 2y/26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31
x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31
y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31
z/15 = 26/31 ⇒ z = 26/31 . 15 = 390/31
Vậy x = 312/31; y = 338/31; z = 390/31
Tìm x, biết :
a) (x+4)2-x2(x+12)=16
c) (x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
d) (x-2)3-(x+5)(x2-5x+25)-6x2=11
c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)
\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
giá trị x=-4 là nghiệm của phương trình nào?
A -3,5x=14
B -2,5x=-10
C 2x-8=0
D 2x-1=x+7
Bài 1: Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
Bài 2: Tìm m để đa thức
A(x)= 2x^3 + x^2 - 4x + m chia hết cho đa thức B(x)= 2x-1
Bài 3 : Phân tích đa thức thành nhân tử
a) x^2 - 8x
b) x^2 - xy - 6x + 6y
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Tìm x
a) 5.x^3 - 5 = 0
b) ( x+1)^2 = 16
c) ( x+1)^3 = 27
d) ( x-1)^3 = 343
e) (2x - 1^3) = 125
`@` `\text {Ans}`
`\downarrow`
`a)`
\(5\cdot x^3-5=0\)
`=> 5*x^3 = 0+5`
`=> 5*x^3 = 5`
`=> x^3 = 5 \div 5`
`=> x^3 = 1`
`=> x^3 = 1^3`
`=> x=1`
Vậy, `x=1.`
`b)`
\(( x+1)^2 = 16\)
`=> (x+1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4-1\\x=-4-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy, `x \in {3; -5}`
`c)`
\(( x+1)^3 = 27\)
`=> (x+1)^3 = 3^3`
`=> x+1=3`
`=> x=3-1`
`=> x=2`
Vậy, `x=2.`
`d)`
\(( x-1)^3 = 343\)
`=> (x-1)^3 = 7^3`
`=> x-1=7`
`=> x=7+1`
`=> x=8`
Vậy, `x=8.`
`e)`
\((2x - 1^3) = 125\) hay đề là `(2x-1)^3 = 125` vậy ạ?
Mình làm cả 2 TH nhé!
`(2x-1^3)=125`
`=> 2x-1=125`
`=> 2x=125+1`
`=> 2x=126`
`=> x=126 \div 2`
`=> x=63`
TH2:
`(2x-1)^3 = 125`
`=> (2x-1)^3 = 5^3`
`=> 2x-1=5`
`=> 2x=5+1`
`=> 2x=6`
`=> x=6 \div 2`
`=> x=3`
Vậy, `x=3.`
(a) \(5x^3-5=0\Leftrightarrow5x^3=5\Leftrightarrow x^3=1\Leftrightarrow x=1\)
(b) \(\left(x+1\right)^2=16\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
(c) \(\left(x+1\right)^3=27\Leftrightarrow x+1=3\Leftrightarrow x=2\)
(d) \(\left(x-1\right)^3=343\Leftrightarrow x-1=7\Leftrightarrow x=8\)
(e) \(\left(2x-1\right)^3=125\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
Tìm x, y ∈ N biết
a) (x - 2)(y + 1) = 14
b) (x + 1)(y + 2) = 20
c) (2x + 1)(y - 2) = 48