Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hằng Hà
Xem chi tiết
huynh van duong
11 tháng 1 2018 lúc 11:41

cái này mình chịu thua

hình như gtnn nó ko có vì tùy theo x và ko có số lớn nhất nhỏ nhất

1) Để A có giá trị nhỏ nhất thì 2x^2 phải có giá trị dương nhỏ nhất. Nhận thấy rằng 2x^2 >= 0 với mọi x.

Dấu = xảy ra khi 2x^2 = 0, khi đó x = 0.

Vậy để A đạt GTNN thì x = 0, khi đó A = 2 * 0^2 + 1 = 0 + 1 = 1.

2) Để B có giá trị nhỏ nhất thì 2(x - 1)^2 phải có giá trị dương lớn nhất. Nhận thấy rằng 2(x - 1)^2 >= 0 với mọi x.

Dấu = xảy ra khi 2(x - 1)^2 = 0, khi đó x = 1.

Vậy để B đạt GTNN thì x = 1, khi đó B = 2(1 - 1)^2 + 4 = 0 + 4 = 4.

Khách vãng lai đã xóa
Alexandra Alice
Xem chi tiết
Kudora Sera
Xem chi tiết
trần đức mạnh
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Khách vãng lai đã xóa
trần đức mạnh
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Khách vãng lai đã xóa
Unirverse Sky
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Khách vãng lai đã xóa
Giang Hương
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 10:08

a) Do \(\left|1+2x\right|\ge0\Rightarrow\dfrac{-1}{4}\left|1+2x\right|\le0\)

\(\Rightarrow A=2,25-\dfrac{1}{4}\left|1+2x\right|\le2,25\)

\(maxA=2,25\Leftrightarrow x=-\dfrac{1}{2}\)

b) Do \(\left|2x-3\right|\ge0\Rightarrow3+\dfrac{1}{2}\left|2x-3\right|\ge3\)

\(\Rightarrow B=\dfrac{1}{3+\dfrac{1}{2}\left|2x-3\right|}\le\dfrac{1}{3}\)

\(maxB=\dfrac{1}{3}\Leftrightarrow x=\dfrac{3}{2}\)

Giang Hương
4 tháng 9 2021 lúc 10:04

mình ghi nhầm đề bài là Tìm giá trị lớn nhất nhé

Trần Trọng Quang
Xem chi tiết
Yen Nhi
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Khách vãng lai đã xóa
afa2321
Xem chi tiết
Trên con đường thành côn...
12 tháng 7 2021 lúc 17:01

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:39

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Trương Anh Kiệt
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 15:57

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

Nguyễn Việt Lâm
11 tháng 9 2021 lúc 16:00

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

\(A_{min}=-7\) khi \(x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(B_{min}=-\dfrac{1}{4}\) khi \(x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

\(C_{min}=-4\) khi \(x=1\)

Biểu thức D không tồn tại cả max lẫn min

Akai Haruma
11 tháng 9 2021 lúc 17:09

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

Trương Anh Kiệt
Xem chi tiết
Minh Hiếu
10 tháng 9 2021 lúc 20:50

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

Minh Hiếu
10 tháng 9 2021 lúc 20:55

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

Minh Hiếu
10 tháng 9 2021 lúc 21:00

D=\(\dfrac{1}{-\left(x^2-2x+1\right)+6}\)

=\(\dfrac{1}{-\left(x-1\right)^2+6}\)\(\dfrac{1}{6}\)

Min D=1/6 ⇔x=1

ngo thu trang
Xem chi tiết