3.2x+1.2x+2=40
Tìm X
1.2x3+x+ 2x√(1-x) = 3√(1-x)
2. (4x2 +1)x +(x-3)√(5-2x)= 0
3.2x3-4x2 + 3x - 1 = 2x3(2-x)√(3-2x)
x-1.2x-2=8.9
4x(x+2)+3.2x(x-2)=5.2x(x+2)
4x(x+2)+3*2x(x-2)=5*2x(x+2)
=>\(4x\left(x+2\right)+6x\left(x-2\right)-10x\left(x+2\right)=0\)
=>\(-6x\left(x+2\right)+6x\left(x-2\right)=0\)
=>-x(x+2)+x(x-2)=0
=>-x(x+2-x+2)=0
=>-x=0
=>x=0
\(4x\left(x+2\right)+3\cdot2x\left(x-2\right)=5\cdot2x\left(x+2\right)\)
\(4x^2+8x+6x^2-12x=10x^2+20x\)
\(10x^2-4x=10x^2+20x\)
\(10x^2-4x-10x^2-20x=0\)
\(-24x=0\Rightarrow x=0\)
Làm tính nhân phân thức: 4 x + 8 ( x - 10 ) 3 . 2 x - 20 ( x + 2 ) 2
Tìm x biết (1.2x)^3=-8
<=>(1.2x)^3=(-2)^3
<=>1.2x=-2
<=>2x=-2
<=>x=-2:2
<=>x=-1
Vậy x=-1
<3 <3
1.|3x|=x+6
2.(x-3)(x+3)<(x+2)2+3
3.2x-1>5
1. / 3x / = x + 6 ( 1)
*) Với : x < 0 , ta có :
( 1) ⇔ - 3x = x + 6
⇔ -4x = 6
⇔ x = \(\dfrac{-3}{2}\) ( TM)
*) Với : x ≥ 0 , ta có :
( 1) ⇔ 3x = x + 6
⇔ 2x = 6
⇔ x = 3 ( TM)
KL.....
2. ( x - 3)( x + 3) < ( x + 2)2 + 3
⇔ x2 - 9 - x2 - 4x - 4 - 3 < 0
⇔ - 4x - 16 < 0
⇔ -4( x + 4) < 0
⇔ x + 4 > 0
⇔ x > -4
KL....
3. 2x - 1 > 5
⇔ 2x > 6
⇔ x > 3
Vậy , BPT có nghiệm duy nhất : x > 3
Giải các phương trình:
\(1.2x\left(x-3\right)+5\left(x-3\right)\)
\(2.\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
\(3.\dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)
\(1,\) thiếu đề
\(2,\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
\(\Leftrightarrow\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)}{30}-\dfrac{150}{30}\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-55x+20=24x-138\)
\(\Leftrightarrow24x-138+55x-20=0\)
\(\Leftrightarrow79x-158=0\)
\(\Leftrightarrow x=2\)
\(3,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne3\end{matrix}\right.\\ \dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2\left(x-3\right)}+\dfrac{1}{2\left(x-1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4\left(x-1\right)}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{x^2-1}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{x^2-2x-3}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4x-4}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)
\(\Leftrightarrow x.\dfrac{x^2-1+x^2-2x-3-4x+4}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x=0\)
tìm gioi han \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1.2x+1}.\sqrt[3]{2.3x+1}.\sqrt[4]{3.4x+1}...\sqrt[2018]{2017.2018x+1}}{x}\)
Câu này thiếu -1 trên tử rồi :v
Tham khảo câu trả lời của mod Lâm Đọc bị lú rồi :D
5) tính ....a)2/3xy^2.2/3xy b)-1/2x^2y.2xy^2 c)8xy^3.2x^3y^2 d)-1/4x^2y^3.2x^3y^2 e)4x^2y^4.1/2x^2y^3 f)-8xy.1/4x^2y
\(a,\dfrac{2}{3}xy^2.\dfrac{2}{3}xy=\dfrac{4}{9}x^2y^3\)
\(b,-\dfrac{1}{2}x^2y.2xy^2=-x^3y^3\)
\(c,8xy^3.2x^3y^2=16x^4y^5\)
\(d,-\dfrac{1}{4}x^2y^3.2x^3y^2=-\dfrac{1}{2}x^5y^5\)
\(e,4x^2y^4.\dfrac{1}{2}x^2y^3=2x^4y^7\)
\(f,-8xy.\dfrac{1}{4}x^2y=-2x^3y^2\)
\(Ayumu\)
lim\(\dfrac{\sqrt{1.2x+1}.\sqrt[3]{2.3x+a}....\sqrt[2018]{2017.2018x+1}}{x}\) khi x tiến 0
Cái \(\sqrt[3]{2.3x+a}\) đúng hay sai đấy bạn? Bạn có gõ nhầm 1 thành a ko?
Sửa đề:
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1.2x+1}\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}-1}{x}\)
Do gõ \(x\rightarrow0\) dưới lim rất tốn thời gian nên mình bỏ qua, bạn tự hiểu tất cả các giới hạn bên dưới đều là \(x\rightarrow0\)
Trước hết ta dùng L'Hopital để tính giới hạn dạng tổng quát sau:
\(lim\dfrac{\sqrt[n]{\left(n-1\right)n.x+1}-1}{x}=lim\dfrac{\left[\left(n-1\right)nx+1\right]^{\dfrac{1}{n}}-1}{x}\)
\(=lim\dfrac{\dfrac{1}{n}\left[\left(n-1\right)nx+1\right]^{\dfrac{1}{n}-1}.\left(n-1\right)n}{x}=n-1\)
Và \(\sqrt{2.3x+1}...\sqrt[n]{\left(n-1\right)n.x+1}=1\) khi \(x=1\)
\(\Rightarrow lim\dfrac{\sqrt[k]{\left(k-1\right)kx+1}...\sqrt[m]{\left(m-1\right)mx+1}\left(\sqrt[n]{\left(n-1\right)nx+1}-1\right)}{x}=n-1\)
với mọi \(m;k\) (vì đằng nào cái cụm nhân đằng trước cũng ra 1, ko ảnh hưởng)
Áp dụng vào bài toán:
\(lim\dfrac{\sqrt{1.2x+1}\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=lim\dfrac{\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}\left(\sqrt{2.3x+1}-1\right)}{x}+\) \(lim\dfrac{\sqrt[4]{3.4x+1}...\sqrt[2018]{2017.2018x+1}\left(\sqrt[3]{2.3x+1}-1\right)}{x}+...\)
\(+lim\dfrac{\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=2+3+...2017=\dfrac{2016.2019}{2}=2035152\)