Cái \(\sqrt[3]{2.3x+a}\) đúng hay sai đấy bạn? Bạn có gõ nhầm 1 thành a ko?
Sửa đề:
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1.2x+1}\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}-1}{x}\)
Do gõ \(x\rightarrow0\) dưới lim rất tốn thời gian nên mình bỏ qua, bạn tự hiểu tất cả các giới hạn bên dưới đều là \(x\rightarrow0\)
Trước hết ta dùng L'Hopital để tính giới hạn dạng tổng quát sau:
\(lim\dfrac{\sqrt[n]{\left(n-1\right)n.x+1}-1}{x}=lim\dfrac{\left[\left(n-1\right)nx+1\right]^{\dfrac{1}{n}}-1}{x}\)
\(=lim\dfrac{\dfrac{1}{n}\left[\left(n-1\right)nx+1\right]^{\dfrac{1}{n}-1}.\left(n-1\right)n}{x}=n-1\)
Và \(\sqrt{2.3x+1}...\sqrt[n]{\left(n-1\right)n.x+1}=1\) khi \(x=1\)
\(\Rightarrow lim\dfrac{\sqrt[k]{\left(k-1\right)kx+1}...\sqrt[m]{\left(m-1\right)mx+1}\left(\sqrt[n]{\left(n-1\right)nx+1}-1\right)}{x}=n-1\)
với mọi \(m;k\) (vì đằng nào cái cụm nhân đằng trước cũng ra 1, ko ảnh hưởng)
Áp dụng vào bài toán:
\(lim\dfrac{\sqrt{1.2x+1}\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=lim\dfrac{\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}\left(\sqrt{2.3x+1}-1\right)}{x}+\) \(lim\dfrac{\sqrt[4]{3.4x+1}...\sqrt[2018]{2017.2018x+1}\left(\sqrt[3]{2.3x+1}-1\right)}{x}+...\)
\(+lim\dfrac{\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=2+3+...2017=\dfrac{2016.2019}{2}=2035152\)
Thôi trót sửa lại luôn, nhìn lỗi vặt ghét quá
Tất cả các giới hạn đều là \(x\rightarrow0\)
Áp dụng L'Hopital ta có:
\(lim\dfrac{\sqrt[n]{\left(n-1\right)nx+1}-1}{x}=lim\dfrac{\left[\left(n-1\right)n.x+1\right]^{\dfrac{1}{n}}-1}{x}\)
\(=lim\dfrac{\dfrac{1}{n}\left(n-1\right).n\left[\left(n-1\right)n.x+1\right]^{\dfrac{1}{n}-1}}{1}=n-1\)
\(\Rightarrow lim\dfrac{\sqrt[k]{\left(k-1\right)kx+1}...\sqrt[m]{\left(m-1\right)mx+1}\left(\sqrt[n]{\left(n-1\right)n.x+1}-1\right)}{x}\)
\(=\sqrt[k]{0+1}...\sqrt[m]{0+1}\left(n-1\right)=n-1\) \(\forall k,m\in N;m>k\)
Áp dụng vào bài toán:
\(lim\dfrac{\sqrt{1.2x+1}...\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=lim\dfrac{\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}\left(\sqrt{1.2x+1}-1\right)}{x}+\)
\(+lim\dfrac{\sqrt[4]{3.4x+1}...\left(\sqrt[3]{2.3x+1}-1\right)}{x}+...+lim\dfrac{\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=1+2+...+2017=\dfrac{2017.2018}{2}\)