\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{3\left(x-1\right)}{\left(1-x\right)\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}\)
\(=\lim\limits_{x\rightarrow1^-}\dfrac{-3}{\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}=-\dfrac{1}{12}\)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{2m\sqrt{x}+3}{5}=\dfrac{2m+3}{5}\)
Hàm liên tục trên R khi và chỉ khi:
\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\Leftrightarrow\dfrac{2m+3}{5}=-\dfrac{1}{12}\Leftrightarrow m=-\dfrac{41}{24}\)