phân tích đa thức thành nhân tử:x4+2x3+2x2+2x+1
Phân tích đa thức thành nhân tử : x6 - x4 + 2x3 + 2x2
\(=\left(x^6+2x^5+x^4\right)-2\left(x^5+2x^4+x^3\right)+2\left(x^4+2x^3+x^2\right)\)
\(=x^2\left(x^2+x\right)^2-2x\left(x^2+x\right)^2+2\left(x^2+x\right)^2\)
\(=\left(x^2+x\right)^2\left(x^2-2x+2\right)\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
\(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2\left[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\right]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
Phân tích đa thức thành nhân tử : x4 + x3 + 2x2 + x + 1
\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=x^4+x^3+x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^2+1\right)\)
Phân tích đa thức thành nhân tử : 2x2 + x – 6
\(2x^2+x-6\)
\(=2x^2-3x+4x-6\)
\(=x\left(2x-3\right)+2\left(2x-3\right)\)
\(=\left(2x-3\right)\left(x+2\right)\)
2x2 + x - 6
= 2x2 + 4x - 3x - 6
= 2x(x + 2) - 3(x - 2)
= (2x - 3)(x + 2)
Phân tích đa thức thành nhân tử :
(x2 + 6x – 1)2 + 2x2 + x4 + 2(x2 + 6x – 1)(x2 + 1)
\(\left(x^2+6x-1\right)^2+2x^2+x^4+2\left(x^2+6x-1\right)\left(x^2+1\right)\)
\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^2+1\right)^2-1=\left(x^2+6x-1+x^2+1\right)^2-1=\left(2x^2+6x\right)^2-1=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)
\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+x^4+2x^2\)
\(=\left(x^2+6x-1\right)\left(x^2+6x-1+2x^2+2\right)+x^4+2x^2\)
\(=\left(x^2+6x-1\right)\left(3x^2+6x+1\right)+x^4+2x^2\)
\(=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)
Phân tích đa thức thành nhân tử :
3x6 – 4x5 + 2x4 – 8x3 + 2x2 – 4x + 3
\(3x^6-4x^5+2x^4-8x^3+2x^2-4x+3\)
\(=3x^6+3x^4-4x^5-4x^3-x^4-x^2-4x^3-4x+3x^2+3\)
\(=\left(x^2+1\right)\left(3x^4-4x^3-x^2-4x+3\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\left(3x^2-7x+3\right)\)
Phân tích đa thức sau thành nhân tử : (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử : x^4 - 2x^3 + 2x - 1
\(x^4-2x^3+2x-1=x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^3-x^2-x+1\right)=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]=\left(x-1\right)^2\left(x^2-1\right)=\left(x-1\right)^3\left(x+1\right)\)
\(x^4-2x^3+2x-1\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x-1\right)^3\cdot\left(x+1\right)\)
Phân tích đa thức thành nhân tử : x2 - 2x - 24
\(x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x(x-6)+4(x-6)\)
\(=(x+4)(x-6)\)
\(x^2-2x-24\\ =x^2-2x+1-25\\ =\left(x-1\right)^2-5^2\\ =\left(x-1-5\right)\left(x-1+5\right)\\ =\left(x-6\right)\left(x+4\right)\)
\(x^2-2x-24=\left(x-6\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử : x^4 + 2x^3 + x^2 + x + 1
\(=x^2\left(x^2+2x+1\right)+x+1\)
\(=x^2\left(x+1\right)^2+x+1\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4+2x^3+x^2+x+1\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
Phân tích đa thức thành nhân tử : 5x^2 - 4(x^2 - 2x + 1) - 5
\(5x^2-4\left(x^2-2x+1\right)-5=\left(5x^2-5\right)-4\left(x-1\right)^2=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
\(= \)\(5x^2-4x^2+8x-4-5\)
\(=\)\(x^2+8x-9\)
\(=x^2+9x-x-9\)
\(=(x-1)(x+9)\)
\(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)