Giải phương trình
\(8x^3-36x^2+53x-25=\sqrt[3]{3x-5}\)
giải phương trình vô tỉ sau
\(4x^2+\sqrt{3x+1}+5=13x\)
\(\sqrt[3]{3x-5}=8x^3-36x^2+53x-25\)
đặt \(\sqrt{3x+1}=a\)
=> pt <=> 4x^2 +a +6=a^2 +12x
chuyển hết nt sang vế phải để vt =0 ptđttnt có ntc=a+2x-3
câu 2 đặt \(\sqrt[3]{3x-5}=2y-3\) rồi làm tt như bài trên lớp
sau khi chuyển cậu có pt a62-4x^2-a+12x-6=0
=> a^2+2ax-3a-2ax-4x^2+6x+2a+4x-6=0
<=> (a+2x-3)(a-2x+2)=0
c2 đăt...
=>3x-5=(2y-3)^3
mặt khác từ pt =>\(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
=>2y-3=(2x-3)^3-x+2
=>2y+x-5=(2x-3)^3 rồi cậu giải tt bài trên lớp
Giải pt :\(8x^3+53x=36x^2+\sqrt[3]{3x-5}+25\)
3x−53=8x3−36x2+53x−25
PT⇔3x−53=(2x−3)3−(x−2)
Đặt y=3x−53⇒{y3=3x−5=(2x−3)+(x−2)y=(2x−3)3−(x−2)
⇒y3+y=(2x−3)3+(2x−3) (1)
Xét hàm: f(t)=t3+t
có f′(t)=3t2+1>0 nên là hàm đồng biến (2)
Từ (1) và (2) suy ra y=2x−3
Đến đây thay vào , giải PT bậc 3
Chỉ bk lm trừ, ko bk lm cộng
\(\sqrt[3]{3x-5}=8x^3-36x^2+53x-25\)
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
\(\Leftrightarrow3x-5+\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a=b^3+b\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+1\right]=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-3=\sqrt[3]{3x-5}\)
\(\Leftrightarrow\left(2x-3\right)^3=3x-5\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
Giải phương trình:
1, \(2x^2-6x-1=\sqrt{4x+5}\)
2, \(\dfrac{2}{3}\sqrt{4x+1}-9x^2+26x-\dfrac{37}{3}=0\)
3, \(\sqrt[3]{3x-5}=8x^3-36x^2+53x-25\)
1/ Đk : \(2x^2-6x-1\ge0\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3-\sqrt{11}}{2}\\x\ge\frac{3+\sqrt{11}}{2}\end{matrix}\right.\)
Bình phương 2 vế của phương trình, ta có :
\(4x^4+36x^2+1-24x^3-4x^2+12x-4x-5=0\)
\(\Leftrightarrow4x^4-24x^3+32x^2+8x-4=0\)
\(\left[{}\begin{matrix}x=1-\sqrt{2}\left(TM\right)\\x=2-\sqrt{3}\left(l\right)\\x=\sqrt{2}+1\left(l\right)\\x=\sqrt{3}+2\left(TM\right)\end{matrix}\right.\)
Vậy ....
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
\(x\left(8x^2-36x+53\right)=25+\sqrt[3]{3x-5}\)
\(\Leftrightarrow8x^3-36x^2+51x-22+2x-3-\sqrt[3]{3x-5}=0\)
\(\Leftrightarrow8x^3-36x^2+51x-22+\dfrac{8x^3-36x^2+51x-22}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}=0\)
\(\Leftrightarrow\left(8x^3-36x^2+51x-22\right)\left(1+\dfrac{1}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}\right)=0\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
Cách khác: (Đưa về hàm đặc trưng)
\(PT\Leftrightarrow8x^3-36x^2+53x-25=\sqrt[3]{3x-5}\)
\(\Leftrightarrow\left(2x-3\right)^3+2x-3=3x-5+\sqrt[3]{3x-5}\). (*)
Xét hàm \(f\left(t\right)=t^3+t\). Ta thấy f(t) đồng biến trên \(\mathbb{R}\).
Do đó \(\left(\cdot\right)\Leftrightarrow2x-3=\sqrt[3]{3x-5}\)
\(\Leftrightarrow8x^3-36x^2+54x-27=3x-5\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\Leftrightarrow...\)
5. giải phương trình
a.\(\sqrt{\left(x-3\right)^2}=3-x\)
b.\(\sqrt{4x^2-20x+25}+2x=5\)
c.\(\sqrt{1-12x+36x^2}=5\)
a: Ta có: \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3\le0\)
hay \(x\le3\)
b: Ta có: \(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\Leftrightarrow2x-5\le0\)
hay \(x\le\dfrac{5}{2}\)
Giải các phương trình sau:
a. \(\sqrt{\left(3x-1\right)^2}=5\)
b. \(\sqrt{4x^2-4x+1}=3\)
c. \(\sqrt{x^2-6x+9}+3x=4\)
d. \(3\sqrt{9x+9}-\sqrt{36x+36}+2\sqrt{4x+4}=12\)
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)
Giải phương trình:
1/ \(\sqrt{x-2}+\sqrt{x-3}=5\)
2/ \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
3/ \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)