Bài 26: Chứng minh rằng
a) ab(a+b)có vhia hết cho 2(a;b E N)
b)ab+ba chia hết cho 11
c)aaabbb luôn chia hết cho 37
d)ab–ba chia hết cho 9 với a>b
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
Chứng minh rằng : Với mọi n lẻ thì :
a, n^2 +4n+3 vhia hết cho 8
b, n^3 +3n^2-n-3 chia hết cho 48
giai ho minh nha
a, n^2+4n+3 = (n^2-1) +4n+4 = (n-1)(n+1) +4(2a+1)+4 = (n-1)(n+1)+8a+4+4
=(n-1)(n+1)+8a+8 = (n-1)(n+1) + 8.(a+1)
vì n là lẻ => (n-1) và (n+1) là hai số chẵn liên tiếp => (n-1)(n+1)*8
và 8(a+1)*8 => (n-1)(n+1) + 8.(a+1) *8
vậy n^2+4n+3*8 với n là lẻ ( dấu * là dấu chia hết nhé)
b, n^3+3n^2-n-3 = (n^3-n) + (3n^2-3) = n(n^2-1) + 3(n^2-1)= n.(n-1)(n+1) + 3.(n-1)(n+1)
=>3(n-1)(n+1) *8 và n(n-1)(n+1)*8 ( vì theo nguyên lý câu a thì (n-1)(n+1)*8 ) (1)
vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên n(n+1)(n-1) chia hết cho 3 và 2 => n(n-1)(n+1)*6
và 3(n-1)(n+1)*3 mà n-1 là chẵn nên 3(n-1)(n+1)*2 => 3(n-1)(n+1)*6
=> n(n-1)(n+1) + 3(n-1)(n+1) *6 (2)
từ (1) và (2) => n(n-1)(n+1) + 3(n-1)(n+1) * 6.8 = 48 hay n^3+3n^2-n-3*48
vậy với n là lẻ thì n^3+3n^2 -n-3 luôn chia hết cho 48
Bài 1 Cho tam giác ABC có AB = AC Gọi M là trung điểm của BC chứng minh rằng AM là tia phân giác của góc BAC
Bài 2 Cho tam giác ABC đường cao AH trên mặt phẳng bờ AB không chứa điểm b Vẽ tam giác acd sao cho AD = BC CD = AB Chứng minh rằng
A)AB//CD
B) AH vuông góc với AD
Bài 1:
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
Bài 2:
a: Xét ΔDAC và ΔBCA có
DA=BC
AC chung
DC=BA
Do đó: ΔDAC=ΔBCA
=>\(\widehat{DCA}=\widehat{BAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: ΔDAC=ΔBCA
=>\(\widehat{DAC}=\widehat{BCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
AD//BC
AH\(\perp\)BC
Do đó: AD\(\perp\)AH
chứng minh rằng
A = \(3+3^2+3^3+3^4+...+3^{60}\)
a) A chia hết cho 3
b) A chia hết cho 4
c) A chia hết cho 13
giúp mình mik cần gấp
a) \(A=3+3^2+3^3+...+3^{60}\)
Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)
\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)
b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)
Bài 1)Chứng minh rằng
a) 52014+52013-52012 chia hết cho 29
b) 7500+7499-7498 chia hết cho 11
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
Bài 1: Chứng minh rằng:
a) 165+ 215 chia hết cho 33
b) 88+ 220 chia hết cho 17
c) 4343 - 1717 chia hết cho 10
d) 1 - 2 + 22 - 23 + 24 - 25 + 26 - ... - 22021 + 22022 chia 6 dư 1
Bài 2: Chứng minh rằng:
a) \(\overline{aaa}\) ⋮ 37 b) (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
a, \(\overline{aaa}\) \(⋮\) 37
\(\overline{aaa}\) = a x 111 = a x 3 x 37 ⋮ 37 (đpcm)
b, (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
\(\overline{ab}\) + \(\overline{ba}\) = \(\overline{a0}\) + b + \(\overline{b0}\) + a = \(\overline{aa}\) + \(\overline{bb}\) = a x 11 + b x 11 = 11 x (a+b)⋮11
Cho a, b là các số nguyên. Chứng minh rằng
a) chia hết cho a-b với mọi số tự nhiên n.
b) chia hết cho a+b với mọi số tự nhiên n lẻ.
Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
a) a lẻ suy ra a+5 chia hết cho 2
a chẵn suy ra a+8 chia hết cho 2
Cho a,b > 0 thỏa mãn a+b=1.Chứng minh rằng
a, \(a^3\)+\(b^3\)\(\ge\frac{1}{4}\)
b,\(\frac{1}{a^3+b^3}\)+\(\frac{3}{ab}\ge16\)
Lời giải:
a) Áp dụng BĐT Cô-si cho các số dương:
$a^3+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}a$
$b^3+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}b$
$\Rightarrow a^3+b^3+\frac{1}{2}\geq \frac{3}{4}(a+b)=\frac{3}{4}$
$\Rightarrow a^3+b^3\geq \frac{1}{4}$ (đpcm)
Dấu "=" xảy ra khi $a=b=\frac{1}{2}$
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^3+b^3}+\frac{3}{ab}=\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\geq \frac{(1+1+1+1)^2}{a^2-ab+b^2+ab+ab+ab}\)
\(=\frac{16}{(a+b)^2}=16\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{2}$