Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
Bài 1 :Cho 2022 số tự nhiên bất kì .Chứng minh rằng trong các số đó có một số chia hết cho 2022 hoặc có một số số mà tổng của chúng chia hết cho 2022
Chứng minh rằng với mọi số nguyên dương \(n\) thì số \(A=59^n-17^n-9^n+2^n\) chia hết cho 35.
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán với ạ!
Em cám ơn nhiều lắm ạ!
Cho p là số nguyên tố lẻ và a, b, c, d là các số nguyên dương nhỏ hơn p đồng thời a2+b2 chia hết cho p và c2+d2 chia hết cho p. C/m: Trong 2 số ac + bd và ad + bc có một và chỉ một số chia hết cho p.
Cho hai số nguyên \(a;b\) thỏa mãn điều kiện \(a^2+b^2\) chia hết cho 7.
Chứng minh rằng \(a;b\) đều chia hết cho 7.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý, giúp đỡ em với ạ!
Em cám ơn nhiều ạ!
Cho ba số nguyên \(a;b;c\) thỏa mãn \(a^6+b^6+c^6\) chia hết cho 28. Chứng minh rằng \(a.b.c\) chia hết cho 2744.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán, gợi ý giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Cho ba số nguyên \(a;b;c\) thỏa mãn \(a^6+b^6+c^6\) chia hết cho 28. Chứng minh rằng \(a.b.c\) chia hết cho 2744.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Cho hai số nguyên dương \(a;b\) thỏa mãn điều kiện \(2a+5b\) và \(2b+5a\) đều là số chính phương . Chứng minh rằng cả hai số \(a;b\) cùng chia hết cho 7.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Tìm số tự nhiên có 7 chữ số đôi một khác nhau có dạng \(n=\overline{COVID19}\) biết n chia hết cho 7 và số \(\overline{COVID}\) là số chính phương chia hết cho 5.
Chứng minh rằng tồn tại một số tự nhiên khi biểu diễn thập phân chỉ toàn chữ số 1 và chia hết cho 2011.