Chứng minh rằng tồn tại một số tự nhiên khi biểu diễn thập phân chỉ toàn chữ số 1 và chia hết cho 2011.
Cho a, b là các số nguyên. Chứng minh rằng
a) chia hết cho a-b với mọi số tự nhiên n.
b) chia hết cho a+b với mọi số tự nhiên n lẻ.
Cho P(x) =\(ax^2+bx+c\)( a,b,c ) là các số nguyên . Chứng minh rằng tồn tại \(k\in Z\)sao cho P(k) = \(P_{\left(2021\right)}\cdot P_{2022}\)
Cho p là số nguyên tố lẻ và a, b, c, d là các số nguyên dương nhỏ hơn p đồng thời a2+b2 chia hết cho p và c2+d2 chia hết cho p. C/m: Trong 2 số ac + bd và ad + bc có một và chỉ một số chia hết cho p.
cho phương trình:
x2 - x - m2 + 3m - 2 = 0 (m là tham số)
tìm m để phương trình có một nghiệm x=7+\(\sqrt{2022}\)
các bạn giúp mình với ạ mình cảm ơn
Cho A=\(\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\) tử số có 2022 dấu căn,mẫu số có 2021 dấu căn.Chứng minh A<\(\dfrac{1}{4}\).
Tìm số tự nhiên có 7 chữ số đôi một khác nhau có dạng \(n=\overline{COVID19}\) biết n chia hết cho 7 và số \(\overline{COVID}\) là số chính phương chia hết cho 5.
cho số tự nhiên có 2 chữ số biết rằng tổng 2 chữ số của nó bằng 9 nếu lấy số đó chia cho số viết theo thứ tự ngược lại thì được thương là 2 và dư là 18 tìm số ban đầu
Cho đa thức \(f\left(x\right)\) có bậc 3 và hệ số cao nhất bằng 2 thỏa mãn :\(f\left(2020\right)=2021\) và \(f\left(2021\right)=2022\). Tính giá trị của \(f\left(2022\right)-f\left(2019\right)=?\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều lắm ạ!