chứng minh bất đẳng thức (x+y+z)\(^3\) =< 3(\(^{ }\)x\(^2\)+y\(^2\)+z\(^2\))
Chứng minh bất đẳng thức sau:\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(BĐT\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{x+z}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{3}{2}+3=\dfrac{9}{2}\\ \Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge9\left(1\right)\)
Áp dụng BĐT Cauchy:
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nhân vế theo vế 2 BĐT ta được
\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge3\cdot3\sqrt[3]{1}=9\)
Do đó \(\left(1\right)\) luôn đúng
Vậy ta được đpcm
Phải có thêm dữ kiện x,y,z > 0 nữa nhé.
Áp dụng BĐT C - S dạng Engel, ta có:
Cycma(x/(y + z)) = cycma(x^2/(xy + xz)) >= cycma(x)^2/(2cycma(xy)) >= cycma(x)^2/((2cycma(x)^2)/3) = 3/2 (đpcm)
đây là BĐT Nesbit cho 3 số thực dương nên thiếu điều kiện x,y,z\(\in R\)*
Chứng minh bất đẳng thức sau:
\(x^2+y^2+z^2+3\ge2\times\left(x+y+z\right)\)
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Ta có : \(x^2+1\ge2x\) (1)
\(y^2+1\ge2y\) (2)
\(z^2+1\ge2z\) (3)
Cộng các vế của (1) (2) (3) ta được :
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
cho 3 số dương x,y,z thoã mãn điều kiện x^3+y^3+z^3=1 chứng minh bất đẳng thức
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự
\(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3;\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế theo vế
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Cho x,y,z chứng minh bất đẳng thức
X/x^2+y^2 +y/y^2+z^2 +z/x^2+z^2 <_ 1/2(1/x+1/y+1/z)
\(x^2+y^2>=2xy\Rightarrow\frac{x}{x^2+y^2}< =\frac{x}{2xy}=\frac{1}{2y}\)(1)
\(y^2+z^2>=2yz\Rightarrow\frac{y}{y^2+z^2}< =\frac{y}{2yz}=\frac{1}{2z}\)(2)
\(x^2+z^2>=2xz\Rightarrow\frac{z}{x^2+z^2}< =\frac{z}{2xz}=\frac{1}{2x}\)(3)
từ (1) (2) (3)\(\Rightarrow\frac{x}{x^2+y^2}+\frac{y}{y^2+z^2}+\frac{z}{x^2+z^2}< =\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2x}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)(đpcm)
chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
x2+y2z2>=2lxl.lyl.lzl nên VT>=6lxl.lyl.lzl>=6xyz
chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
Cho x+y+z=3 . Chứng minh bất đẳng thức
x2 +y2 +z2 +xy+xz+yz lớn hơn hoặc bằng 6
\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)
\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)
=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)
=> dpcm
Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)
\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)
\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)
Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)
\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)
\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Áp dụng BĐT Cauchy cho 3 số:
\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)
\(\Rightarrow9+x^2+y^2+z^2\ge12\)
hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)
\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)
Chứng minh đẳng thức
3(x^2+y^2+z^2)-(x-y)^2-(y-z)^2-(z-x)^2=(x+y+z)^2
\(VT=3\left(x^2+y^2+z^2\right)-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow3x^2+3y^2+3z^2-x^2+2xy-y^2-y^2+2yz-z^2-z^2+2xz-x^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=\left(x+y+z\right)^2\)* luôn đúng *
Vậ ta có đpcm
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1.Chứng minh bất đẳng thức
\(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(x+2y+z\right)^2}+\frac{1}{\left(x+y+2z\right)^2}\le\frac{3}{16}\)