Cho phân thức A=\(\dfrac{\text{x^3+2x}}{x^4+3x^2+1}\) Chứng minh A là phân số tối giản vs mọi x
cho các số nguyên dương x,y thỏa mãn \(x^3-9y^2+9x-6y=1\) a) chứng minh \(\dfrac{x}{x^2+9}\) là phân số tối giản b) tìm tất cả các cặp số (x;y)
Lời giải:
$x^3-9y^2+9x-6y=1$
$\Leftrightarrow x^3+9x=9y^2+6y+1$
$\Leftrightarrow x(x^2+9)=(3y+1)^2$
Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$
$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$
Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau.
$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.
Rút gọn biểu thức. Chứng minh rằng biểu thức rút gọn không âm vs mọi giá trị của biến thuộc tập xác định (coi a là hằng):
1 - (\(\dfrac{a+x}{ax-x^2}\) + \(\dfrac{2a+3x}{x^2-a^2}\)) : \(\dfrac{a^4-4x^4}{a^4x-a^2x^3}\)
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x+1}-2}{x^2-1}=\dfrac{a}{b},voi\dfrac{a}{b}\) là phân số tối giản . tính \(a^2+b\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x+1}-2}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{3x+1-4}{\sqrt{3x+1}+2}\cdot\dfrac{1}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+2\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{3}{\left(x+1\right)\left(\sqrt{3x+1}+2\right)}=\dfrac{3}{\left(1+1\right)\left(\sqrt{3+1}+2\right)}\)
\(=\dfrac{3}{2\cdot4}=\dfrac{3}{8}\)
=>a=3;b=8
=>a2+b=9+8=17
Biết \(\xrightarrow[x->1]{lim}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\dfrac{\sqrt{a}}{b}\)
với a,b là số tự nhiên và \(\dfrac{a}{b}\) là phân số tối giản. Tính a-b
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).
Từ đó a = 5; b = 4 nên a - b = 1.
chứng tỏ là phân số tối giản
\(\dfrac{2x+1}{2x+2}\) ; \(\dfrac{2x+3}{3x+2}\)
Đặt d = ƯCLN(2x+1;2x+2)
Suy ra 2x +1 ; 2x+2 chia hết cho d. Suy ra 2x +2 - 2x +1 chia hết cho d. Suy ra 1 chia hết cho d. Suy ra ƯCLN(2x+1,2x+2) =1
Vậy 2x+1/2x+2 là phân số tối giản.(đpcm).
chứng minh rằng vs mọi số tự nhiên x ta đều có \(\frac{14x+3}{21x+4}\)là 1 phân số tối giản
Gọi \(ƯCLN\left(14x+3,21x+4\right)=d\)
Ta có :
14 = 2.7
21 = 3.7
\(BCNN\left(14x,21x\right)=7.2.3=42x\)
Lại có : \(14x+3⋮d\); \(21x+4⋮d\)
\(\Rightarrow3\left(14x+3\right)⋮d\)
\(\Rightarrow2\left(21x+4\right)⋮d\)
\(\Rightarrow3\left(14x+3\right)-2\left(21x+4\right)⋮d\)
\(\Rightarrow\left(42x+9\right)-\left(42x+8\right)⋮d\)
\(\Rightarrow42x+9-42x-8⋮d\)
\(\Rightarrow\left(42x-42x\right)+\left(9-8\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\left(ĐPCM\right)\)
Vậy phân số \(\frac{14x+3}{21x+4}\)là phân số tối giản \(\forall x\inℕ\)
Chứng minh rằng phân thức A = \(\dfrac{n+3}{n+2}\) tối giản
Tính giá trị của biểu thức A tại x = -2
ĐK:n≠-2
Gọi \(d=ƯCLN\left(n+3,n+2\right)\)
\(\Rightarrow n+3⋮d;n+2⋮d\\ \Rightarrow n+3-n-2⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy n+3 và n+2 nctn hay \(\dfrac{n+3}{n+2}\) tối giản
Với n=-2 trái vs ĐKXĐ nên A ko xác định
1. Chứng minh các phân số sau là phân số tối giản với mọi số nguyên n : A=12n+1/30n+2
2. Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất : C =5/x-2
Giúp nhoa mọi người
1) Cho biểu thức: \(A=\frac{x-2}{x+5}\)
a) tìm các số nguyên x đẻ A là phân số
b) tìm các số nguyên x để A là số nguyên
2) chứng minh rằng phân số \(\frac{2n+1}{2n+3}\) là phân số tối giản với mọi n thuộc số tự nhiên