Tìm x,y,z nguyên dương:
( x2 + 2y + z3 ) . ( x4 + 10y - z4 ) và x > y > z
cho \(1\le x,y,z\le2\)
và x+y+z=5
tìm Max P= x4+y4+z4
nhờ mn giúp mk vs ak
Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)
\(\Rightarrow x^4\le15x-14\).
Tương tự: \(y^4\le15y-14;z^4\le15z-14\).
Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:
\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).
Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.
Vậy...
Nếu cảm thấy khó khăn khi tìm đánh giá kia thì bạn có thể làm từ từ từng bước như sau, đầu tiên so sánh \(x^2\) và \(x\) bằng 1 đánh giá cơ bản:
\(\left(x-1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le3x-2\)
Tiếp theo ta so sánh \(x^4\) với \(x^2\) bằng 1 đánh giá tương tự:
\(\left(x^2-1\right)\left(x^2-4\right)\le0\Leftrightarrow x^4\le5x^2-4\)
\(\Rightarrow x^4\le5\left(3x-2\right)-4\Leftrightarrow x^4\le15x-14\)
cho x+y+z=3
tìm minM: x4+y4+z4+12(1-x)(1-y)(1-z)
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) x2 + y2 ≥ (x + y)2/2
b) x3 + y3 ≥ (x + y)3/4
c) x4 + y4 ≥ (x + y)4/8
d) x2 + y2 + z2 ≥ xy + yz + zx
e) x2 + y2 + z2 ≥ (x + y + z)2/3
f) x3 + y3 + z3 ≥ 3xyz
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
cho x+y+z=0. chứng minh 2(x4+y4+z4)=(x2+y2+z2)2
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào
\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Ta có
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)
Bình phương 2 vế của (1)
\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)
Do x+y+z=0 nên
\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)
Thay (3) vào (2)
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)
Tìm x,y, z biết:
2) 3x= 2y=z và x+y+z= 99
3) 6x= 10y= 14z và x+y+z= 46
1)
\(3x=2y=z\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
\(\Rightarrow\begin{cases}x=18\\y=26\\z=54\end{cases}\)
2)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{46}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1610}{71}\\y=\frac{966}{71}\\z=\frac{690}{71}\end{cases}\)
2) Tính chất tỉ lệ thức :
\(3x=2y=z\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{99}{6}=16,5\)
\(\frac{x}{3}=16,5\Rightarrow x=49,5\)
\(\frac{y}{2}=16,5\Rightarrow y=33\)
\(\frac{z}{1}=16,5\Rightarrow z=16,5\)
3) Áp dụng tính chất tỉ lệ thức :
\(6x=10y=14z\Rightarrow\frac{x}{6}=\frac{y}{10}=\frac{z}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{6+10+14}=\frac{46}{130}=\frac{23}{65}\)
\(\frac{x}{6}=\frac{23}{65}\Rightarrow x=\frac{6}{5}\)
\(\frac{y}{10}=\frac{23}{65}\Rightarrow y=\frac{46}{13}\)
\(\frac{z}{14}=\frac{23}{65}\Rightarrow z=\frac{322}{65}\)
Cho các nguyên tử có số hiệu tương ứng là X (Z1 = 11), Y (Z2 = 14), Z (Z3 = 17), T (Z4 = 20), R (Z5 = 10). Các nguyên tử là kim loại gồm :
A. Y, Z, T.
B. Y, T,R.
C. X, Y, T.
D. X, T.
Cấu hình e của X : $1s^2 2s^2 2p^6 3s^1$
Cấu hình e của Y : $1s^2 2s^2 2p^6 3s^2 3p^2$
Cấu hình e của T : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
Cấu hình e của R : $1s^2 2s^2 2p^6$
Nguyên tử có nhỏ hơn hoặc bằng 3 electron lớp ngoài cùng thì là kim loại
Suy ra, chọn D
Cho x,y,z là các số không âm thỏa x+y+z=5
Tìm GTLN của
a) 4x2+3y2+z3
b) 5x2+6y3+z4
Tìm x,y,z biết : x2 =y3 =z4 và x2−y2 2z2=108