a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
giúp với ạ
Bài 1:Rút gọn biểu thức
a)A=(x+y)2 - (x-y)2
b)B=(x+y)2 - 2(x+y)(x-y)+(x-y)2
c)(x2 + x +1)(x2 -x+1)(x2 -1)
d)(a+b-c)2 + (a-b+c)2 - 2(b-c)2
Bài 2: Cho các số thực x,y thỏa mãn điều kiện x+y=3; x2 +y2 =17. Tính giá trị biểu thức x3 +y3
:Các biểu thức sau không phụ thuộc vào giá trị của biến đúng hay sai :
a/ 2(2x+x2)-x2(x+2)+(x3-4x+3) b/ x(x2+x+1)-x2(x+1) –x+5
c/ 3x(x-2)-5x(x-1)-8(x2-3) d/ 2y(y2+y+1)-2y2(y+1)-2(y+10)
1.Cho a,b,c >0. Chứng minh rằng:
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2^{ }+b^2}\ge3\)2.
Cho x,y,z là các số thực thỏa mãn 2 (y2 + yz + z2) + 3x2= 36. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x + y + z
4/ Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:
a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy
c) 3a2 - 6ab + 3b2 - 12c2 d)x2 - 25 + y2 + 2xy
e) a2 + 2ab + b2 - ac - bc f)x2 - 2x - 4y2 - 4y g) x2y - x3 - 9y + 9x h)x2(x-1) + 16(1- x)
n) 81x2 - 6yz - 9y2 - z2 m)xz-yz-x2+2xy-y2 p) x2 + 8x + 15 k) x2 - x - 12
l) 81x2 + 4
Chứng minh rằng nếu x+y=1 thì x2 + y2 \(\ge\) \(\dfrac{1}{2}\)
Mong mn giúp đỡ
Phân tích các đa thức sau thành nhân tử :
a) (x+y+z)3 - x3 - y3 - z3
b) x(y2 - z2) + y(z2 - x2) + z(x2-y2)
c) xy(x+y) + yz(y+z) + zx (z+x) + 3xyz
d)(xy + 4)2 - (2x + 2y)2
e) 2x4 + 7x3 +3
f) x2 - 4xy + 3y2
Ai đó giúp em với ~~
Chứng minh rằng nếu: x+y=1 thì x2 = y2 \(\ge\) \(\dfrac{1}{2}\)
Mình đang cần gấp. Mong mn giúp đỡ ạ ^^