Tìm điều kiện xác định cho mỗi căn thức bậc hai sau:
a) \(\sqrt{x+1}\); b) \(\sqrt{x^2+1}\).
Tìm điều kiện xác định căn bậc hai cũa x^2-x+1
Tìm điều kiện xác định của các biểu thức sau:
a) 2018\(\sqrt{2-\sqrt{x-1}}\)
b) \(\sqrt{3-\sqrt{x}}\)
Lời giải:
a. ĐKXĐ:
\(\left\{\begin{matrix} x-1\geq 0\\ 2\geq \sqrt{x-1}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 4\geq x-1\end{matrix}\right. \Leftrightarrow 5\geq x\geq 1\)
b. ĐKXĐ:
\(\left\{\begin{matrix} x\geq 0\\ 3\geq \sqrt{x}\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)
* Tìm điều kiện để căn thức bậc hai có nghĩa
a. \(\sqrt{3-5x}\)
b. \(\sqrt{\dfrac{5}{2x+1}}\)
a) Để căn thức bậc 2 có nghĩa \(\Rightarrow3-5x\ge0\Rightarrow x\le\dfrac{3}{5}\)
b) Để căn thức bậc 2 có nghĩa \(\Rightarrow\dfrac{5}{2x+1}\ge0\Rightarrow2x+1>0\Rightarrow x>-\dfrac{1}{2}\)
\(a,x\le\dfrac{3}{5}\)
b,\(x>-\dfrac{1}{2}\)
a, để căn thức có nghĩa thì 3-5x≥0⇔x≤\(\dfrac{3}{5}\)
b, để căn thức có nghĩa thì 2x+1>0⇔x>\(\dfrac{-1}{2}\)
1.
a. Tìm điều kiện đẻ căn thức bậc hai coa nghĩa
\(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
1.a) Để căn thức có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{2x-1}\ge0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)
Vậy...
b, \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}=\sqrt[3]{\dfrac{625}{5}}-\sqrt[3]{-\dfrac{216}{27}}=\sqrt[3]{125}-\sqrt[3]{-8}=5-\left(-2\right)=7\)
a) Để căn thức có nghĩa thì 2x-1>0
\(\Leftrightarrow2x>1\)
hay \(x>\dfrac{1}{2}\)
b) Ta có: \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}\cdot\sqrt[3]{\dfrac{1}{27}}\)
\(=5-\left(-6\right)\cdot\dfrac{1}{3}\)
\(=5+6\cdot\dfrac{1}{3}=5+2=7\)
\(\sqrt{\frac{3x+1}{10}}\) Tìm điều kiện xác định của x để căn thức sau có nghĩa (xác định)
Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0
Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)
a.tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
Để căn thức \(\sqrt{\dfrac{2x+1}{x^2+1}}\) có nghĩa thì:
\(\left\{{}\begin{matrix}\dfrac{2x+1}{x^2+1}\ge0\\x^2+1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+1\ge0\left(vì.x^2+1>0\forall x\right)\\x^2+1\ne0\forall x\end{matrix}\right.\)
\(\Rightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)
#\(Toru\)
\(\sqrt{\dfrac{2x+1}{x^2+1}}\)
Có nghĩa khi:
\(\dfrac{2x+1}{x^2+1}\ge0\)
\(\Leftrightarrow2x+1\ge0\)
\(\Leftrightarrow2x\ge-1\)
\(\Leftrightarrow x\ge-\dfrac{1}{2}\)
Vậy: ...
tìm điều kiện xác định căn thức
\(\sqrt{\frac{2}{3}x-\frac{1}{5}}\)
ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)
\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)
TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC TRONG CĂN BẬC HAI CÓ NGHĨA
1,\(\sqrt{x^2-3x+2}\)
2,\(\sqrt{\dfrac{x-6}{x-2}}\)
3,\(\sqrt{\dfrac{2x-4}{5-x}}\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
2) ĐKXĐ: \(\dfrac{x-6}{x-2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\x-6\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x\ge6\end{matrix}\right.\)
3) ĐKXĐ: \(\dfrac{2x-4}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-2}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow2\le x< 5\)
Tìm điều kiện để căn thức sau xác định \(\sqrt{x^2+5x+4}\)
Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)
Do đó: (x+1) và (x+4) là 2 số cùng dấu.
TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)
TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)
Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)
Chúc bạn học tốt.
Tìm điều kiện để các biểu thức sau xác định
a) căn bậc hai của 2x+4/x^2-6x+9
b) căn bậc hai của x^2+2x+3
Mng giúp em vs ak thanks