tìm x
a) 3x3-12x=0
b) 2x2-x-6=0
các bạn ơi giúp mik nhanh nhé
Bài 5: Biết :
a. 3x + 2( 5 - x ) = 0
b. 2x( x + 3 ) + 2( x + 3 ) = 0
Giá trị của x cần tìm là ?
Bài 6: Rút gọn biểu thức:
A = 2x2(-3x3 + 2x2 + x - 1) + 2x(x2 – 3x + 1) giúp mik nhanh dc ko
Giải pt nghiệm nguyên:
a,3y2-xy-2x+y+1=0
b,x2+3y2+4xy-2x-6y-24=0
c,x2+8y2+6xy+4x+8y-17=0
d,2x2+5y2-8x+3y=0
Các bn cứ giải giúp mik vói,mai mik phải nộp rồi
Tìm x
a,(7x+4)^2-(7x+4)(7x-4)=0
b, 5( x + 3 )( x - 3 ) + ( 2x + 3 )^2+(x-6)^=10
c, (x + 1)^3 + (x – 2)^3 – 2x^2 (x – 1,5) = 3
d,( x + 2)(x^2 – 2x + 4)(x – 2)(x^2 + 2x + 4) = – 65
e, 4x^2 + 4x – 5 = 2
f,16x^2 – 9(x + 1)^2 = 0
Các bạn giúp mình vs mai mình phải nộp rùii
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
Tìm các số nguyên x,y biết rằng
\(\dfrac{3-x}{y-4}\)= \(\dfrac{2}{5}\) và 2x+y= 0
Các bạn giải giúp mình nhé, ai nhanh nhất mình tick cho nha !!!
Theo đề: \(2x+y=0\Leftrightarrow y=-2x\) \(\left(1\right)\)
Ta có:
\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)
\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)
\(\Leftrightarrow15-5x=2y-8\)
\(\Leftrightarrow15+8=2y+5x\)
\(\Leftrightarrow5x+2y=23\) \(\left(2\right)\)
Thế (1) vào (2), suy ra:
\(5x+2.\left(-2x\right)=23\)
\(\Leftrightarrow5x-4x=23\)
\(\Leftrightarrow x=23\)
\(\Rightarrow y=-2.23=-46\)
chiếu một tia sáng vuông góc với một mặt gương phẳng . góc phản xạ r có giá trị nào sau đây
A. r = 0^0
B. r = 45^0
C. r = 90^0
D. r = 180^0
các bạn ơi giúp mình với
Cho đa thức A(x) = - 3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a, thu gọn đa thức
và cho biết bậc của đa thức, hệ số cao nhất ( các bn giúp mik vs)
a,
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất ứng với x mũ lớn nhất là 1
Thu gọn:
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\)
\(A\left(x\right)=\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)-\left(6+4\right)\)
\(A\left(x\right)=x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất là 1
Ta có:
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x^{ }\)
\(=\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)-\left(6+4\right)\)
\(=x^3+x-10\)
Bậc của đa thức là 3, hệ số cao nhất là 1
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Tìm các số nguyên x,y biết:
a,(x+1)(y-2) = 3
b,(2x - 1)(3y + 1) = 12
c, xy - x + y - 2 = 0
CÁC BẠN LÀM NHANH LÊN HỘ MÌNH NHÉ, NHỚ TRÌNH BÀY ĐẦU ĐỦ NHÉ :))
a)(x+1)(y-2)=3
x+1;y-2 thuộc Ư(3){1;-1;3;-3}
ta có bảng sau :
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
y-2 | 1 | -1 | 3 | -3 |
y | 3 | 1 | 5 | -1 |
vậy cặp x;y thuộc {(2;3);(0;1);(4;5);(-2;-1)}
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)