2x^2+9y^2+9=8x+6y
Tim x,y biet:
1)x^2-2x+5+y^2-4y=0
2)4x^2+y^2-20x+26-2y=0
3)x^2+4y^2+13-6x-8y=0
4)4x^2+4x-6y+9x^2+2=0
5)x^2+y^2+6x-10y+34=0
6)25x^2-10x+9y^2-12y+5=0
7)x^2+9y^2-10x-12y+29=0
89x^2+12x+4y62+8y+8=0
9)4x^2+9y^2+20x-6y+26=0
10)3x^2+3y^2+6x-12y+15=0
11)x^2+4y^2+4x-4y+5=0
12)4x^2-12x+y^2-4y+13=0
13)x^2+y^2+2x-6y+10=0
14)4x^2+9y^2-4x+6y+2=0
15)y^2+2y+5-12x+9x^2=0
16)x^2+26+6y+9y^2-10x=0
17)10-6x+12y+9x^2+4y^2=0
18)16x^2+5+8x-4y+y^2=0
19)x^2+9y^2+4x+6y+5=0
20)5+9x^2+9y^2+6y-12x=0
21)x^2+20+9y62+8x-12y=0
22)x^2=4y+4y^2+26-10x=0
23)4y^2+34-10x+12y+x^2=0
24)-10x+y^2-8y+x^2+41=0
25)x^2+9y^2-12y+29-10x=0
26)9x^2+4y^2+4y+5-12x=0
27)4y^2-12x+12y+9x^2=13=0
28)4x^2+25-12x-8y+y^2=0
29)x62+17+4y^2+8x+4y=0
30)4y^2+12y+25+8x+x^2=0
31)x^2+20+9y^2+8x-12y=0
giup mk voi minh can gap ak, cam on cac ban
Tìm x,y
2+3y/13=2+6y/17=2+9y/8x
Áp dụng dãy tỉ số bằng nhau:
\(\frac{2+3y}{13}=\frac{2+6y}{17}=\frac{2\left(2+3y\right)-\left(2+6y\right)}{2.13-17}=\frac{2}{9}\)
=> \(2+3y=\frac{26}{9}\)=> \(y=\frac{8}{27}\)
\(\frac{2+9y}{8x}=\frac{2+3y}{13}=\frac{2}{9}\)
=> \(9\left(2+9y\right)=2.8x\)
=> \(16x=42\)
=> \(x=\frac{21}{8}\)
thử lại thỏa mãn
Vậy:...
tim x y z biết
a,4x^2+9y^2+4x-24y+17=0
b,2x^2+2y^2+z^2+2xy-2xz-6y+9=0
c,x^2+2y+2xy+2x+6y+5=0
tim x y z biết
a,4x^2+9y^2+4x-24y+17=0
b,2x^2+2y^2+z^2+2xy-2xz-6y+9=0
c,x^2+2y+2xy+2x+6y+5=0
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
Phân tích đa thức thành nhân tử
a,x^2y^2-x^2+8x-16
b,x^2-2x-9y^2+6y
c,x^2+7x+7y-y^2
b) x2 - 2x - 9y2 + 6y = ( x2 - 9y2 ) - ( 2x - 6y ) = (x + 3y)(x - 3y) -2(x - 3y)
=(x-3y)(x+3y-2)
c) x2 + 7x + 7y - y2 = (x2 - y2) + (7x + 7y) = (x + y)(x - y) + 7(x + y)
=(x + y)(x - y + 7)
tính nhanh: a) (x^2 - 6xy + 9y^2) : ( 3 y - x)
b) (8x^3 - 1 ) : ( 4x^2 + 2x + 1)
c) ( 4x^4 - 9 ) : ( 2x^2 - 3 )
d) ( 8x^3 - 27 ) : ( 4x^2 + 6x + 9)
a) (x2-6xy+9y2):(3y-x)
= (x-3y)2:(3y-x)
=(3y-x)2:(3y-x)
= 3y-x
b) (8x3-1):(4x2+2x+1)
=[(2x)3-1]:(4x2+2x+1)
= (2x-1)(4x2+2x+1):(4x2+2x+1)
= 2x-1
c) (4x4-9):(2x2-3)
=(2x2-3)(2x2+3):(2x2-3)
=2x2+3
d) (8x3-27):(4x2+6x+9)
=(2x-3)(4x2+6x+9):(4x2+6x+9)
=2x-3
Viết các biểu thức sau dưới dạng tổng của hai bình phương:
5)-12x+13-24y+9x^2+16y^2
6)a^2-4ab+5b^2-4bc+4c^2
7)5x^2+y^2+z^2+4xy-2xz
8)9x^2+25-12xy+2y^2-10y
9)13x^2+4x-12xy+4y^2+1
10)x^2+4y^2+4x-4y+5
11)4x^2-12x+y^2-4y+13
12)x^2+y^2+2y-6x+10
13)4x^2+9y^2-4x+6y+2
14)y^2+2y+5-12x+9x^2
15)x^2+26+6y+9y^2-10x
16)10-6x+12y+9x^2+4y^2
17)16x^2+5+8x-4y+y^2
18)x^2+9y^2+6x-12y
19)5+9x^2+9y^2+6y-12
20)x^2+20+9y^2+8x-12y
21)x^2+4y+4y^2+26-10x
22)4y^2+34-10x+12y+x^2
23)-10x+y^2-8y+x^2+41
24)x^2+9y^2-12y+29-10x5
25)9x^2+4y^2+4y-12x+5
26)4y^2-12x+12y+9x^2+13
27)4x^2+25-12x-8y+y^2
28)x^2+17+4y^2+8x+4y
29)4y^2+12y=25+8x+x^2
30)x^2+20+9y^2+8x-12y
MONG CAC BAN GIUP MINH VOI ,MINH CAN GAP ,CAM ON NHIEU
1) Chứng minh biểu thức sau ko phụ thuộc vào biến x, y
3y(-3-2)²-(3y-1)(9y²+3y+1)-(-6y-1)²
2) tìm x
a: (2x+5)(2x-7)-(-4x-3)²=16
b:(8x²+3)(8x²-3)-(8x²-1)²=22
c:49x²+14x+1=0
d:(x-1)³-x(x-2)²-(x-2)=0
Bài 2:
a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)
\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)
\(\Leftrightarrow-12x^2-28x-60=0\)
\(\Leftrightarrow3x^2+7x+15=0\)
\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)
Do đó: Phương trình vô nghiệm
b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)
\(\Leftrightarrow16x^2=32\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: Ta có: \(49x^2+14x+1=0\)
=>\(\left(7x+1\right)^2=0\)
hay x=-1/7
x^2-xy-2x+2y
x^2-9y^2+6y-1
1.\(x^{2}-xy-2x+2y\)
\(=x(x-2)-y(x-2)\)
\(=(x-y)(x-2)\)
2.\(x^{2}-9y^{2}+6y-1\)
\(=x^{2}-(9y^{2}-6y+1)\)
\(=x^{2}-(3y-1)^{2}\)
\(=(x+3y-1)(x-3y+1)\)
1) Chứng minh biểu thức sau ko phụ thuộc vào biến x, y
3y(-3-2)²-(3y-1)(9y²+3y+1)-(-6y-1)²
2) tìm x
a: (2x+5)(2x-7)-(-4x-3)²=16
b:(8x²+3)(8x²-3)-(8x²-1)²=22
c:49x²+14x+1=0
d:(x-1)³-x(x-2)²-(x-2)=0
Giúp mk, mk đang cần gấp
Bài 2:
a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)
\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)
\(\Leftrightarrow-12x^2-28x-60=0\)
\(\Leftrightarrow3x^2+7x+15=0\)
\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)
Do đó: Phương trình vô nghiệm
b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)
\(\Leftrightarrow16x^2=32\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: Ta có: \(49x^2+14x+1=0\)
=>\(\left(7x+1\right)^2=0\)
hay x=-1/7